निर्धारित समय : 3 घण्टे

Time Allowed: 3 hours
सामान्य निर्देश :

General Instructions:

सभी प्रश्न अनिवार्य हैं।
All questions are compulsory.

अधिकतम अंक . 90
Maximum Marís: 90

इस प्रश्न पत्र में 34 प्रश्न हैं, जिन्हें चार खण्डों अ, ब, स तंग़ द में बांट गया है। खण्ड-अ में 1-1 अंक के 8 बहुविकल्पीय प्रश्न हैं, खण्ड-ब में 6 प्रश्न हैं जिनगें प्रत्येक के 2 संक हैं, खण्ड-स में 10 प्रश्न हैं जिनमें प्रत्येक के 3 अंक है तथा खण्ड-द में 10 प्रश्न हैं जिनमें प्रचक दे 4 अंक हैं
The question paper consists of 34 questions divided into four sections A, B, C and D. SectionA comprises of $\mathbf{8}$ multiple chgife cutstions of $\mathbf{1}$ mark each; Section-B comprises of $\mathbf{6}$ questions of $\mathbf{2}$ marks each; Section-C comprisfs of $\mathbf{1 0}$ questions of $\mathbf{3}$ marks each and SectionD comprises of $\mathbf{1 1}$ questions of $\mathbf{4}$ marks each

इस प्रश्न पत्र में कोई विकल्प नीं है।
There is no overall chece in this question paper
कैलकुलेटर का प्रयोग 1 जित है।
Use of calculator is iot perinityd.

खण्ड-अ / SECTION - A

प्रश्न तंख्या 1 से 8 ाक प्रत्येक प्रश्न 1 अंक का है।
Question numb, ers 1 to 8 carry 1 mark each.

6 (जहाँं) एक प्राकृत संख्या है) को किस छाटे से छोटे धनात्मक पूणांक से गुणा किया जाए, ताकि यह अंक 0 पर समीचा हें?
(a) ऐसा कोई पूर्णांक नहीं है
(b) 3
(c) 5
(d) 25

What is the smallest positive integer which should be multiplied with 6^{n} (where n is a natural number) so that it ends with the digit 0 ?
(a) there does not exist any such integer
(b) 3
(c) 5
(d) 25

यदि $3 x+7 y=75$ है और $7 x+3 y=25$ है, नो $x+y$ को मान है :
(a) 14
(b) 150
(c) 10
(d) 100

If $3 x+7 y=75$ and $7 x+3 y=25$, then the value of $x+y$ is :
(a) 14
(b)
150
(c) 10
(d) 100

नीचे दिए आलेखों में ने को सी आलेख गस बहुपद को निरूपित करता है, जिसके कोई वास्तविक शून्यक नहीं हैं?
(A)

(B)

(D)

 zeroes?
(A)

(B)
represents a polynomial with no real Which of the following graphs
(D)

(

यदि $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}, \operatorname{ar}(\Delta \mathrm{DEF})=20 \% \mathrm{~cm}^{2}, \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{1}{2}$ है, तो $\operatorname{ar}(\triangle \mathrm{ABC})$ है :
(a) $25 \mathrm{~cm}^{2}$
(b) $50 \mathrm{~cm}^{2}$
(c) $200 \mathrm{en}^{2}$
(d) $250 \mathrm{~cm}^{2}$

If $\triangle A B C-D E F$, an $\triangle D F F)=200 \mathrm{~cm}^{2}, \frac{A B}{D E}=\frac{1}{2}$, then ar $(\triangle A B C)$ is :
(a) $25 \mathrm{~cm}^{2}$
(b) $50 \mathrm{~cm}^{2}$
(c) $\quad 200 \mathrm{~cm}^{2}$
(d) $250 \mathrm{~cm}^{2}$

6
यदि $\sec 2 A)=\operatorname{cosec}\left(\mathrm{A}-27^{\circ}\right)$ है, जबकि 2 A एक न्यून कोण है, तो $\angle \mathrm{A}$ की माप बराबर है :
(a)
(b) 37°
(c) 39°
(d) 21°

If $\sec 2 \mathrm{~A}=\operatorname{cosec}\left(\mathrm{A}-27^{\circ}\right)$ where 2 A is an acute angle, then the measure of $\angle \mathrm{A}$ is :
(a) 35°
(b) 37°
(c) 39°
(d) 21°

7 यदि $x=2 \sin ^{2} \theta$ और $y=2 \cos ^{2} \theta-2$ है, तब $x+y$ का मान है :
(A) $\frac{1}{2}$
(B) 2
(C) 0
(D) 1

If $x=2 \sin ^{2} \theta$ and $y=2 \cos ^{2} \theta-2$, then the value of $x+y$ is :
(A) $\frac{1}{2}$
(B) 2
(C) 0
(D) 1

8 निम्न में से कौन सा किसी बटंन की केंद्रीय प्रवृति का माप नहीं है ?
(A) प्रसार
(B) माध्यक
(C) बहुलक
(D) माध्य

Which of the following is not a measure of central tendercy in a distrifution?
(A) Range
(B) Median
(C) Mode
(D) Mean

खण्ड-ब/SECIION - B

प्रश्न संख्या 9 से 14 तक प्रत्येक प्रश्न 2 अंका का है।

Question numbers 9 to 14 carry 2 marks each.

यूक्लिड विभाजन एल्गोरिथ्म के प्रयोग से 918 तथा 162 का म.स. (HCF) ज्ञात कीजिए।
Find the HCF of 918 and 162 using Euclid's Division Algorithm.

वह द्विघाی बहुगद बनाइए जिसके शून्यक $\frac{3-\sqrt{3}}{5}$ तथा $\frac{3+\sqrt{3}}{5}$ हैं।
Furn a cuadrati. polynomial whose zeroes are $\frac{3-\sqrt{3}}{5}$ and $\frac{3+\sqrt{3}}{5}$.
$\triangle A B C$ मे $A B=24 \mathrm{~cm}, B C=10 \mathrm{~cm}$ और $A C=26 \mathrm{~cm}$ हैं। क्या $\triangle A B C$ में, $\angle B$ एक समकोण होगा? अपने उत्तर की 2 पुष्टि में क्लारण दीजिए।

In $\triangle A B C, A B=24 \mathrm{~cm}, B C=10 \mathrm{~cm}$, and $A C=26 \mathrm{~cm}$. Is it true to say that $\triangle A B C$ is right-angled at B ? Give reason in support of your answer.

यदि $4 \cos \theta=11 \sin \theta$ है तो $\frac{11 \cos \theta-7 \sin \theta}{11 \cos \theta+7 \sin \theta}$ का मान ज्ञात कीजिए।
If $4 \cos \theta=11 \sin \theta$, find the value of $\frac{11 \cos \theta-7 \sin \theta}{11 \cos \theta+7 \sin \theta}$.

अंक	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$		
विद्यार्थियों की संख्या	15	30	45	12	18		
Find the mode of the following frequency distribution :							
Marks $10-20$ $20-30$ $30-40$ $40-50$ 50 Number of students 15 30 45 12 18						$=$	
:---							

खण्ड-स / SECTICN - C

प्रश्न संख्या 15 से 24 तक प्रत्येक प्रश्न 3 अं $ढ$ का हैं।
Question numbers 15 to 24 cary 3 marks each.

दर्शाइए कि कोई भी धनात्मक सम पूर्णांक $8 q, 8 q+2,8 q+4$ या $8 q+6$ के रूप का होता, है जहाँ q कोई पूर्णांक है।
Show that any positive even integer is of the form $8 q, 8 q+2,8 q+4$ or $8 q+6$, where q is some integer.

16 भाग की विधि द्वारा दराडए कि $x-1=$ हुपद $x^{3}-x^{2}-5 x+3$ का एक गुणनखण्ड है।
Show by divicion mathed that $x-1$ is a factor of polynomial $x^{3}-x^{2}-5 x+3$.
$17 x$ तथा y करिए हल कोजड:

$$
x+y=a+b
$$

$$
\left.a x+\mathrm{b}^{y}=\mathrm{a}^{2}+\mathrm{b}^{2}\right)
$$

Saive for x anu y :
$x+y=a+b$
$a x+b y=a^{2}+b^{2}$

यदि एक चतुर्भुज के विकर्ण एक दूसरे को सननुपात में बांटते हैं नो सिद्ध कीजिए कि यह एक समलंब है।
If the diagonals of a quadrilateial diviae each other proportionally, prove that it is a trapezium.

सिद्ध कीजिए : $\frac{\tan \theta+\operatorname{se}-1}{\tan \theta-\sec \theta+1}=\frac{1+\sin \theta}{\sin \theta}$
Prove that : $\frac{\tan ^{\theta}}{\tan } \frac{\sec ^{\theta}-1}{\sec ^{\theta}+1}=\frac{+\sin ^{\theta}}{\cos ^{\theta}}$

यदि $x \sin ^{3} ;+y \operatorname{sis}^{3} \theta=\sin \theta \cos \theta$ तथा $x \sin \theta=y \cos \theta$ है, तो सिद्ध कीजिए कि $x^{2}+y^{2}=1$

$$
\text { If } x \sin ^{2} \theta+!\cos ^{3} \theta-\operatorname{sir} \theta \cos \theta \text { and } x \sin \theta=y \cos \theta \text { prove that } x^{2}+y^{2}=1
$$

निम्न सगरणी में ताक फैक्टरो के 200 श्रमिकों का दैनिक वेतन दर्शाया गया है। इन आंकडों का माध्यक ज्ञात कीजिए : 3

दैनिक देत्न (रु.में)	100 से कम	200 से कम	300 से कम	400 से कम	500 से कम
शश्ािकों की संख्या	40	82	154	184	200

Find he median for the following table which shows the daily wages drawn by 200 workers in a factory.

D ily wages (in Rs.)	Less than 100	Less than 200	Less than 300	Less than 400	Less than 500

No. of workers	40	82	154	184	200

निम्न बंटन के लिए लुप्त बारंबारता ज्ञात कीजिए जबकि यह दिया है कि बंटन का माध्यक 24 है :

आयु (वर्षों में) :	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
बारंबारता :	5	25	f_{1}	18	7

Calculate the missing frequency from the following distribution, it is given that the median of the distribution is 24 :

Age (in years) :	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency :	5	25	f_{1}	18	7

खण्ड-द/ SECTIC.N - D

प्रश्न संख्या 25 से 34 तक प्रत्येक प्रश्न 4 अंको का है

 Question numbers 25 to 34 carry 4 marks each.अमीता, सुनेहा तथा राघव ने एक वृद्ध आयु गह के प्रत्येक व्यिजि के लिए कार्ड बनाने शुरु किए। एक कार्ड के पूरा 4 करने में वह क्रमशः 10,16 तथा 20 मिनट नेते हैं। यदि तीनों ने एक साथ शुरु किया, तो कितने समय के बाद फिर एक कार्ड को इकठ्ठा शुरु करेंगे। इन बच्चा किन मूल्यों वा प्रदर्शन हुआ ?
Amita, Suneha and Raghav start preparing ards for all the persons of an old age home. In order to complete one card, they take 10, 16 and 20 minutes respectively. If all of them started together, after what time will they tart preparing a new card together? Which values do these children reflect.

यदि एक भिन्न के उ, शैर हर में ताने जोड़ा जाए, तो वह $\frac{4}{5}$ बन जाती है, जबकि उसके अंश और हर में पाँच जोड़ने पर वह $\frac{9}{11}$ गती है, तो निन ज्ञात कीजिए।

If a fraction iecomes $\frac{-}{5}$ when three is added both to numerator and denominator and when five is added to \%oth numerator and denominator it becomes $\frac{9}{11}$, then find the fraction.

ब्नुुद $x^{3}-10 x^{2}+31 x-30$ के अन्य शून्यक ज्ञात कीजिए, यदि 2 और 3 इसके शून्यक हैं।
Fincicie other zero(es) if 2 and 3 are zeroes of $x^{3}-10 x^{2}+31 x-30$.

निम्न आंक ड़ि वा माध्य, माध्यक तथा बहुलक ज्ञात कोजिए :
यदि $\sin ^{\theta}=\frac{\mathrm{c}}{\sqrt{\mathrm{c}^{2}+\mathrm{d}^{2}}}$ तर $\mathrm{a}>0$ है, तब $\cos \theta$ और $\tan \theta$ के मान ज्ञात कीजिए।
If $\sin \theta=\frac{c}{\sqrt{c^{2}+}}=$ and $a>0$, thrd the values of $\cos \theta$ and $\tan \theta$.

वर्ग $\quad 2-50$ E¢-100	100-150	150-200	200-250	250-300	300-350
बार्बारता 2 β	5	6	5	3	1

Find mean. median and mode of the following data:

Class	$0-50$	$50-100$	$100-150$	$150-200$	$200-250$	$250-300$	$300-350$
Frequenicy	2	3	5	6	5	3	1

निम्न बारबांरता बटंन के लिये एक "से अधिक वाला"" तोरण खींचिए। अतः बटंन का माध्यक

वर्ग :	$5-10$	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$	$35-40$
बारबारता :	2	12	2	4	3	4	3

Draw a more than ogive for the following frequency distribution and herice obtain the median.

Class :	$5-10$	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$	$35-40$
Frequency :	2	12	2	4	3	4	3

