X Chapter: Quardatic Equation Solved Question and Self Evaluation Question part-1 Nature of roots of a quadratic equation

The roots of the equation $ax^2 + bx + c = 0$ are given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

 $b^2 - 4ac > 0$, we get two distinct real roots

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.
 $b^2 - 4ac = 0$, then the equation has two equal roots $x = \frac{-b}{2a}$.

 $b^2 - 4ac < 0$, then $\sqrt{b^2 - 4ac}$ is not a real number. Therefore there is no real root for the given quadratic equation.

Determine the nature of roots of the following quadratic equations

(i)
$$x^2 - 11x - 10 = 0$$

(i)
$$x^2 - 11x - 10 = 0$$
 (ii) $4x^2 - 28x + 49 = 0$ (iii) $2x^2 + 5x + 5 = 0$

(iii)
$$2x^2 + 5x + 5 = 0$$

Solution For $ax^2 + bx + c = 0$, the discriminant, $\Delta = b^2 - 4ac$.

Here, a = 1; b = -11 and c = -10.

Now, the discriminant is $\Delta = b^2 - 4ac$

$$= (-11)^2 - 4(1)(-10) = 121 + 40 = 161$$

Thus, $\triangle > 0$. Therefore, the roots are real and unequal.

Here, a = 4, b = -28 and c = 49. (ii)

Now, the discriminant is $\Delta = b^2 - 4ac$

$$=(-28)^2-4(4)(49)=0$$

Since $\Delta = 0$, the roots of the given equation are real and equal.

(iii) Here, a = 2, b = 5 and c = 5.

 $\Delta = b^2 - 4ac = (5)^2 - 4(2)(5) = 25 - 40 = -15$ Now, the discriminant

Since $\Delta < 0$, the equation has no real roots.

Prove that the roots of the equation $(a-b+c)x^2+2(a-b)x+(a-b-c)=0$ are rational numbers for all real numbers a and b and for all rational c.

Let the given equation be of the form $Ax^2 + Bx + C = 0$. Then, Solution

$$A = a - b + c$$
, $B = 2(a - b)$ and $C = a - b - c$.

Now, the discriminant of $Ax^2 + Bx + c = 0$ is

$$B^{2} - 4AC = [2(a-b)]^{2} - 4(a-b+c)(a-b-c)$$

$$= 4(a-b)^{2} - 4[(a-b)+c][(a-b)-c]$$

$$= 4(a-b)^{2} - 4[(a-b)^{2} - c^{2}]$$

$$\triangle = 4(a-b)^2 - 4(a-b)^2 + 4c^2 = 4c^2$$
, a perfect square.

Therefore, $\Delta > 0$ and it is a perfect square.

Hence, the roots of the given equation are rational numbers.

Find the values of k so that the equation $x^2 - 2x(1+3k) + 7(3+2k) = 0$ has real and equal roots.

Solution The given equation is $x^2 - 2x(1+3k) + 7(3+2k) = 0$. (1)

Let the equation (1) be in the form $ax^2 + bx + c = 0$

Here, a = 1, b = -2(3k + 1), c = 7(3 + 2k).

Now, the discriminant is $\Delta = b^2 - 4ac$

$$= (-2(3k+1))^2 - 4(1)(7)(3+2k)$$

= $4(9k^2 + 6k + 1) - 28(3+2k) = 4(9k^2 - 8k - 20)$

Given that the equation has equal roots. Thus, $\Delta = 0$

$$\implies 9k^2 - 8k - 20 = 0$$

$$\implies (k-2)(9k+10) = 0$$

Thus, k = 2, $-\frac{10}{9}$.

Self Evaluation

Determine the nature of the roots of the equation. 1.

(i)
$$x^2 - 8x + 12 = 0$$

(ii)
$$2x^2 - 3x + 4 = 0$$

(iii)
$$9x^2 + 12x + 4 = 0$$

(i)
$$x^2 - 8x + 12 = 0$$

(ii) $2x^2 - 3x + 4 = 0$
(iii) $9x^2 + 12x + 4 = 0$
(iv) $3x^2 - 2\sqrt{6}x + 2 = 0$

(v)
$$\frac{3}{5}x^2 - \frac{2}{3}x + 1 = 0$$
 (vi) $(x - 2a)(x - 2b) = 4ab$

(vi)
$$(x-2a)(x-2b) = 4ab$$

Find the values of k for which the roots are real and equal in each of the following 2. equations.

(i)
$$2x^2 - 10x + k = 0$$

(ii)
$$12x^2 + 4kx + 3 = 0$$

(iii)
$$x^2 + 2k(x-2) + 5 = 0$$

(iii)
$$x^2 + 2k(x-2) + 5 = 0$$
 (iv) $(k+1)x^2 - 2(k-1)x + 1 = 0$

- Show that the roots of the equation $x^2 + 2(a+b)x + 2(a^2+b^2) = 0$ are unreal. 3.
- Show that the roots of the equation $3p^2x^2 2pqx + q^2 = 0$ are not real. 4.
- If the roots of the equation $(a^2 + b^2)x^2 2(ac + bd)x + c^2 + d^2 = 0$, 5. where $ad - bc \neq 0$, are equal, prove that $\frac{a}{b} = \frac{c}{d}$.
- Show that the roots of the equation 6. (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 are always real and they cannot be equal unless a = b = c.
- If the equation $(1 + m^2)x^2 + 2mcx + c^2 a^2 = 0$ has equal roots, then prove that 7. $c^2 = a^2(1+m^2).$

Relations between roots and coefficients of a quadratic equation

Therefore, if α , β are the roots of $ax^2 + bx + c = 0$, then

- the sum of the roots, $\alpha + \beta = -\frac{b}{a}$ (i)
- the product of roots, $\alpha\beta = \frac{c}{a}$ (ii)

Formation of quadratic equation when roots are given

Let α and β be the roots of a quadratic equation.

Then $(x - \alpha)$ and $(x - \beta)$ are factors.

$$\therefore (x - \alpha) (x - \beta) = 0$$

$$\Rightarrow x^2 - (\alpha + \beta)x + \alpha\beta = 0$$

That is, $x^2 - (\text{sum of roots})x + \text{product of roots} = 0$

If one of the roots of the equation $3x^2 - 10x + k = 0$ is $\frac{1}{3}$, then find the other root and also the value of k.

Solution The given equation is $3x^2 - 10x + k = 0$.

Let the two roots be α and β .

$$\therefore \qquad \alpha + \beta = \frac{-(-10)}{3} = \frac{10}{3} \tag{1}$$

 $\alpha = \frac{1}{3}$ in (1) we get $\beta = 3$

Also,
$$\alpha\beta = \frac{k}{3}$$
, $\Longrightarrow k = 3$

Thus, the other root $\beta = 3$ and the value of k = 3.

If the sum and product of the roots of the quadratic equation $ax^2 - 5x + c = 0$ are both equal to 10, then find the values of a and c.

Solution The given equation is $ax^2 - 5x + c = 0$.

Sum of the roots, $\frac{5}{a} = 10$, $\implies a = \frac{1}{2}$

Product of the roots, $\frac{c}{a} = 10$

 $c = 10a = 10 \times \frac{1}{2} = 5$

Hence, $a=\frac{1}{2}$ and c=5If α and β are the roots of the equation $2x^2-3x-1=0$, find the values of

(i)
$$\alpha^2 + \beta^2$$

(ii)
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$
 (iii) $\alpha - \beta$ if $\alpha > \beta$ (iv) $\left(\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}\right)$

(iv)
$$\left(\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}\right)$$

(v)
$$\left(\alpha + \frac{1}{\beta}\right)\left(\frac{1}{\alpha} + \beta\right)$$
 (vi) $\alpha^4 + \beta^4$ (vii) $\frac{\alpha^3}{\beta} + \frac{\beta^3}{\alpha}$

(vi)
$$\alpha^4 + \beta$$

(vii)
$$\frac{\alpha^3}{\beta} + \frac{\beta^9}{\alpha}$$

Solution Given equation is $2x^2 - 3x - 1 = 0$

Let the given equation be written as $ax^2 + bx + c = 0$

Then, a=2, b=-3, c=-1. Given α and β are the roots of the equation.

$$\therefore \alpha + \beta = \frac{-b}{a} = \frac{-(-3)}{2} = \frac{3}{2} \text{ and } \alpha\beta = -\frac{1}{2}$$

(i)
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = (\frac{3}{2})^2 - 2(-\frac{1}{2}) = \frac{9}{4} + 1 = \frac{13}{4}$$

(ii)
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} = \frac{\left(\frac{3}{2}\right)^2 - 2\left(-\frac{1}{2}\right)}{-\frac{1}{2}} = \frac{13}{4} \times (-2) = -\frac{13}{2}$$

(iii)
$$\alpha - \beta = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta} = \left[\left(\frac{3}{2} \right)^2 - 4 \times \left(-\frac{1}{2} \right) \right]^{\frac{1}{2}} = \left(\frac{9}{4} + 2 \right)^{\frac{1}{2}} = \frac{\sqrt{17}}{2}$$

(iv)
$$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta} = \frac{(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)}{\alpha\beta} = \frac{\frac{27}{8} + \frac{9}{4}}{\frac{-1}{2}} = -\frac{45}{4}$$

(v)
$$\left(\alpha + \frac{1}{\beta}\right)\left(\frac{1}{\alpha} + \beta\right) = \frac{(\alpha\beta + 1)(1 + \alpha\beta)}{\alpha\beta}$$
$$= \frac{(1 + \alpha\beta)^2}{\alpha\beta} = \frac{\left(1 - \frac{1}{2}\right)^2}{-\frac{1}{2}} = -\frac{1}{2}$$

(vi)
$$\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2\alpha^2\beta^2$$

= $(\frac{13}{4})^2 - 2(-\frac{1}{2})^2 = (\frac{169}{16} - \frac{1}{2}) = \frac{161}{16}$.

(vii)
$$\frac{\alpha^3}{\beta} + \frac{\beta^3}{\alpha} = \frac{\alpha^4 + \beta^4}{\alpha\beta} = (\frac{161}{16})(-\frac{2}{1}) = -\frac{161}{8}$$
.

Form the quadratic equation whose roots are $7 + \sqrt{3}$ and $7 - \sqrt{3}$.

Solution Given roots are $7 + \sqrt{3}$ and $7 - \sqrt{3}$.

$$\therefore$$
 Sum of the roots = $7 + \sqrt{3} + 7 - \sqrt{3} = 14$.

Product of roots =
$$(7 + \sqrt{3})(7 - \sqrt{3}) = (7)^2 - (\sqrt{3})^2 = 49 - 3 = 46$$
.

The required equation is $x^2 - (\text{sum of the roots})x + (\text{product of the roots}) = 0$

Thus, the required equation is $x^2 - 14x + 46 = 0$

If α and β are the roots of the equation

$$3x^2 - 4x + 1 = 0$$
, form a quadratic equation whose roots are $\frac{\alpha^2}{\beta}$ and $\frac{\beta^2}{\alpha}$.

Solution Since α, β are the roots of the equation $3x^2 - 4x + 1 = 0$,

we have
$$\alpha + \beta = \frac{4}{3}, \quad \alpha\beta = \frac{1}{3}$$

Now, for the required equation, the sum of the roots = $\left(\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}\right) = \frac{\alpha^3 + \beta^3}{\alpha\beta}$

$$=\frac{(\alpha+\beta)^3-3\alpha\beta(\alpha+\beta)}{\alpha\beta}=\frac{\left(\frac{4}{3}\right)^3-3\times\frac{1}{3}\times\frac{4}{3}}{\frac{1}{3}}=\frac{28}{9}$$

Also, product of the roots $= \left(\frac{\alpha^2}{\beta}\right) \left(\frac{\beta^2}{\alpha}\right) = \alpha\beta = \frac{1}{3}$

 \therefore The required equation is $x^2 - \frac{28}{9}x + \frac{1}{3} = 0$ or $9x^2 - 28x + 3 = 0$

Self Evaluation Question Bank

1.	Find t	he sum	and the	product	of the	roots	of the	e followir	ng equatio	ns.
	(i)	$r^2 - 6r$	± 5 – ()			(ii)	$kx^2 +$	rx + nk =	- 0

(iii)
$$3x^2 - 5x = 0$$
 (iv) $8x^2 - 25 = 0$

Form a quadratic equation whose roots are (ii) $3 + \sqrt{7}$, $3 - \sqrt{7}$ (iii) $\frac{4 + \sqrt{7}}{2}$, $\frac{4 - \sqrt{7}}{2}$

3. If
$$\alpha$$
 and β are the roots of the equation $3x^2 - 5x + 2 = 0$, then find the values of
(i) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ (ii) $\alpha - \beta$ (iii) $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$
4. If α and β are the roots of the equation $3x^2 - 6x + 4 = 0$, find the value of $\alpha^2 + \beta^2$.

4.

If α , β are the roots of $2x^2 - 3x - 5 = 0$, form a equation whose roots are α^2 and β^2 .

If α , β are the roots of $x^2 - 3x + 2 = 0$, form a quadratic equation whose roots are $-\alpha$ and $-\beta$.

If α and β are the roots of $x^2 - 3x - 1 = 0$, then form a quadratic equation

whose roots are $\frac{1}{\alpha^2}$ and $\frac{1}{\beta^2}$. If α and β are the roots of the equation $3x^2 - 6x + 1 = 0$, form an equation whose roots are (i) $\frac{1}{\alpha}$, $\frac{1}{\beta}$ (ii) $\alpha^2 \beta$, $\beta^2 \alpha$ (iii) $2\alpha + \beta$, $2\beta + \alpha$

Find a quadratic equation whose roots are the reciprocal of the roots of the equation $4x^2 - 3x - 1 = 0.$

If one root of the equation $3x^2 + kx - 81 = 0$ is the square of the other, find k. 10.

If one root of the equation $2x^2 - ax + 64 = 0$ is twice the other, then find the value of a

If α and β are the roots of $5x^2 - px + 1 = 0$ and $\alpha - \beta = 1$, then find p.

If one zero of the polynomial $p(x) = (k+4)x^2 + 13x + 3k$ is reciprocal of the other, then k is equal to

(A) 2

(A) 2 (B) 3 (C) 4 (D) 5 The sum of two zeros of the polynomial $f(x) = 2x^2 + (p+3)x + 5$ is zero, then the value of p is

(A) 3 (B) 4 (C) -3 The square root of 49 $(x^2 - 2xy + y^2)^2$ is

(B) 7(x+y)(x-y) (C) $7(x+y)^2$ (D) $7(x-y)^2$ (A) 7|x-y|

The square root of $x^2 + y^2 + z^2 - 2xy + 2yz - 2zx$

(A)
$$|x+y-z|$$
 (B) $|x-y+z|$ (C) $|x+y+z|$ (D) $|x-y-z|$ If $ax^2 + bx + c = 0$ has equal roots, then c is equal

(A)
$$\frac{b^2}{2a}$$
 (B) $\frac{b^2}{4a}$ (C) $-\frac{b^2}{2a}$ (D) $-\frac{b^2}{4a}$

If $x^2 + 5kx + 16 = 0$ has no real roots, then

(A)
$$k > \frac{8}{5}$$
 (B) $k > -\frac{8}{5}$ (C) $-\frac{8}{5} < k < \frac{8}{5}$ (D) $0 < k < \frac{8}{5}$

If b = a + c, then the equation $ax^2 + bx + c = 0$ has

(B) no roots (C) equal roots (A) real roots (D) no real roots