MARKING SCHEME MATHEMATICS (Subject Code–041) (PAPER CODE: 30/1/1)

Q. No.	EXPECTED OUTCOMES/VALUE POINTS	Marks
	SECTION A	
	Questions no. 1 to 18 are multiple choice questions (MCQs) and questions number 19 and 20 are Assertion-Reason based questions of 1 mark each	
1.	The graph of $y = p(x)$ is given, for a polynomial $p(x)$. The number of zeroes of $p(x)$ from the graph is	
	(A) 3 (B) 1 (C) 2 (D) 0	
	$x' \leftarrow \bigcirc \\ \downarrow \\ y' \end{pmatrix} = p(x)$	
Sol.	(B) 1	1
2.	The value of k for which the pair of equations $kx = y + 2$ and $6x = 2y + 3$	
	has infinitely many solutions,	
	(A) is $k = 3$ (B) does not exist (C) is $k = -3$ (D) is $k = 4$	
Sol.	(B) does not exist	1
3.	If $p-1$, $p+1$ and $2p+3$ are in A.P., then the value of p is (A) -2 (B) 4 (C) 0 (D) 2	
Sol.	(C) 0	1
4.	In what ratio, does <i>x</i> -axis divide the line segment joining the points $A(3,6)$ and $b(-12,-3)$?	
	(A) 1:2 (B) 1:4 (C) 4:1 (D) 2:1	

Sol.	(D) 2 : 1	1
5	In the given figure, PQ is tangent to the circle centred at O.	
5.	If $\angle AOB = 95^\circ$, then the measure of $\angle ABQ$ will be	
	A DE	
	(A) 47.5° (B) 42.5° (C) 85° (D) 95°	
Sol.	(A) 47.5°	1
6.	If $2 \tan A = 3$, then the value of $\frac{4 \sin A + 3 \cos A}{4 \sin A - 3 \cos A}$ is	
	(A) $\frac{7}{\sqrt{13}}$ (B) $\frac{1}{\sqrt{13}}$ (C) 3 (D) does not exist	
Sol.	(C) 3	1
7.	If α , β are the zeroes of a polynomial $p(x) = x^2 + x - 1$, then $\frac{1}{\alpha} + \frac{1}{\beta}$ equals to	
	(A) 1 (B) 2 (C) -1 (D) $\frac{-1}{2}$	
Sol.	(A) 1	1
8.	The least positive value of k , for which the quadratic equation	
	$2x^2 + kx - 4 = 0$ has rational roots, is	
	(A) $\pm 2\sqrt{2}$ (B) 2 (C) ± 2 (D) $\sqrt{2}$	
Sol.		1
9.	$\left[\frac{3}{4}\tan^2 30^0 - \sec^2 45^0 + \sin^2 60^0\right]$ is equal to	
	(A) -1 (B) $\frac{5}{6}$ (C) $\frac{-3}{2}$ (D) $\frac{1}{6}$	
Sol.	(A) – 1	1

10.	Curved surface	area of a area $\pi = 3$	cylinder	of height	t 5 cm is 94	4.2 cm^{-2}	. Radius	of the	
	(A) 2 cm	(B) 3 cr	n	(C) 2.9 c	em (D)	6 cm			
Sol.	(B) 3								1
11.	The distribution	n below gi	ves the r	narks obt	ained by 8	0 studen	ts on a te	st :	
	Marks	Less	Less	Less	Less	Less	Less		
		than 10	than	than	than 40	than	than		
	Number of	3	20	30	57	50 75	60 80	_	
	Students	5	12	21	57	15	80		
	The modal class	s of this d	istributio	on is :		~]	
	(A) 10-20)			•	(B) 20	-30		
	(C) 30-40)				• (D) 50	-60		
Sol.	(C) 30 – 40				2				1
12.	The curved sur	face area o	of a cone	having h	eight 24 ci	m and rad	dius 7 cm	n, is	
	(A) 528 cm ²	(B) 105	56 cm ²	(C) 55	0 cm ²	(D) 500	cm ²		
Sol.	(C)550cm ²			S.					1
13.	The distance between the points $(0, 2\sqrt{5})$ and $(-2\sqrt{5}, 0)$ is								
	(A) $2\sqrt{10}$ units	s (B) 41	/10units	(C)	$2\sqrt{20}$ units	s (D) ()		
Sol.	(A) $2\sqrt{10}$ unit	s	S						1
14.	Which of the fo	ollowing is	s a quadr	atic poly	nomial hav	ing zero	es $\frac{-2}{3}$ an	d $\frac{2}{3}$?	
	(A) $4x^2 - 9$	(B) $\frac{4}{9}(9)$	$9x^2 + 4$)	(C) x^{2}	$^{2}+\frac{9}{4}$ ((D) 5(9 <i>x</i>	² -4)		
Sol.	(D) 5 $(9x^2 - 4)$								1
15.	If the value of e mean of the dat	each obser ta	vation of	a statisti	cal data is	increased	l by 3, th	en the	
	(A) remains un	changed		(B)) increases	by 3			
	(C) increases b	у б		(E) increases	s by 3n			
C - 1	(D) in a second 1	~ 2							1
501.	(B) increases b	уэ							1

16	Probability of happening of an event is denoted by p and probability of non-	
10.	happening of the event is denoted by q . Relation between p and q is	
	(A) $p+q=1$ (B) $p=1, q=1$	
	(C) $p = q - 1$ (D) $p + q + 1 = 0$	
Sol.	(A) $p + q = 1$	1
17.	A girl calculates that the probability of her winning the first prize in a lotteryis 0.08. If 6000 tickets are sold, how many tickets has she bought?(A) 40(B) 240(C) 480(D) 750	
Sol.	(C) 480	1
18.	In a group of 20 people, 5 can't swim. If one person is selected at random, then the probability that he/she can swim, is (A) $\frac{3}{4}$ (B) $\frac{1}{3}$ (C) 1 (D) $\frac{1}{4}$	
Sol.	(A) 3/4	1
	Assertion-Reason Type Questions	
	 In Question 19 and 20, an Assertion (A) statement is followed by a statement of Reason (R). Select the correct option out of the following : (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A). (B) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A). (C) Assertion (A) is true but Reason (R) is false. (D) Assertion (A) is false but Reason (R) is true. 	
19.	Assertion (A): Point $P(0, 2)$ is the point of intersection of y-axis with the line $3x + 2y = 4$. Reason (R): The distance of point $P(0, 2)$ from x-axis is 2 units.	
Sol.	(B) Both Assertion (A) and Reason (R) are correct but Reason (R) is not the correct explanation of Assertion (A)	1

20.	Assertion (A): The perimeter of $\triangle ABC$ is a rational number. Reason (R): The sum of the squares of two rational numbers is always rational.	
Sol.	(D) Assertion (A) is false but Reason (R) is true	1

	SECTION B	
	This section comprises of Very Short Answer (VSA) type questions of 2 marks each.	
21(a).	Solve the pair of equations $x = 3$ and $y = -4$ graphically.	
Sol.	Correct graph of both the equations.	1
	Solution of equation is $x = 3$, $y = -4$	1
	OR	
21(b).	Using graphical method, find whether following system of linear equations	
	is consistent or not:	
	x = 0 and $y = -7$	
Sol.	Correct graph of $y = -7$ and $x = 0$	1
	As $y = -7$ is intersecting $x = 0$ at $(0, -7)$	
	So, system of equations is consistent	1
22	In the given figure, XZ is parallel to BC. $AZ = 3 \text{ cm}$, $ZC = 2 \text{ cm}$,	
	BM = 3 cm and MC = 5 cm. Find the length of XY.	

	A Y Y Z Z C	
Sol.	As $XZ \parallel BC$ Therefore $\frac{AX}{XB} = \frac{3}{2} = \frac{AZ}{ZC}$ (i)	1/2
	$\Delta AXY \sim \Delta ABM$	1/2
	$\Rightarrow \frac{AX}{AB} = \frac{XY}{BM} \text{ or } \frac{3}{5} = \frac{XY}{3}$	1⁄2
	$\Rightarrow XY = \frac{9}{5} \text{ or } 1.8 \text{ cm}$	1/2
23(a).	If $sin\theta + cos\theta = \sqrt{3}$, then find the value of $sin\theta \cdot cos\theta$.	
Sol.	$\sin\theta + \cos\theta = \sqrt{3}$	
	squaring both sides	
	$\sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta = 3$	1
	$\Rightarrow 1 + 2\sin\theta\cos\theta = 3$	1/2
	$\Rightarrow \sin \theta \cos \theta = 1$	1/2
	OR	
23(b).	If $\sin \alpha = \frac{1}{\sqrt{2}}$ and $\cot \beta = \sqrt{3}$, then find the value of $\csc \alpha + \csc \beta$	

Sol.	$\operatorname{cosec} \alpha = \frac{1}{\sin \alpha} = \sqrt{2}$	1⁄2
	$\operatorname{cosec} \beta = \sqrt{1 + \cot^2 \beta} = \sqrt{1 + 3} = 2$	1
	$\therefore \csc \alpha + \csc \beta = \sqrt{2} + 2 \text{ or } \sqrt{2} \ (\sqrt{2} + 1)$	1⁄2
24.	Find the greatest number which divides 85 and 72 leaving remainders 1 and 2 respectively.	
Sol.	We have to find HCF of $85 - 1 = 84$ and $72 - 2 = 70$.	1
	HCF of 84 and 70 = 14	1
25.	A bag contains 4 red, 3 blue and 2 yellow balls. One ball is drawn at random from the bag. Find the probability that drawn ball is (i) red (ii) yellow.	
Sol.	Total No of Balls=9	
	(i) P(drawn ball is red) = $\frac{4}{9}$	1
	(ii) P(drawn ball is yellow) $= \frac{2}{9}$	1
	SECTION C	
	This section comprises of Short Answer (SA) type questions of 3 marks each.	
26.	Half of the difference between two numbers is 2. The sum of the greater number and twice the smaller number is 13. Find the numbers.	
Sol.	Let the numbers be x and y, $x > y$	
	Therefore $\frac{1}{2}(x - y) = 2$ — (i)	1
	and $2y + x = 13$ — (ii)	1
	Solving equations (i) and (ii)	
	x = 7, y = 3	1

27.	Prove that $\sqrt{5}$ is an irrational number.	
Sol.	Let $\sqrt{5}$ be a rational number.	
	$\therefore \sqrt{5} = \frac{p}{q}$, where $q \neq 0$ and let p & q be co-primes.	1⁄2
	$5q^2 = p^2 \implies p^2$ is divisible by $5 \implies p$ is divisible by 5	1
	\Rightarrow p = 5a, where 'a' is some integer (i)	-
	$25a^2 = 5q^2 \Longrightarrow q^2 = 5a^2 \Longrightarrow q^2$ is divisible by $5 \Longrightarrow q$ is divisible by 5	14
	\Rightarrow q = 5b, where 'b' is some integer (ii)	72
	(i) and (ii) leads to contradiction as 'p' and 'q' are co-primes. $\therefore \sqrt{5}$ is an irrational number.	1
28	If (-5,3) and (5,3) are two vertices of an equilateral triangle, then find	
20.	coordinates of the third vertex, given that origin lies inside the triangle. (Take	
	$\sqrt{3} = 1.7$)	
Sol.	Let the third vertex be (x,y)	
	$A = (5,3) \qquad B = (5,3) \qquad A (-5,3) \qquad B(5,3) \qquad C(x,y) \qquad A = 10 \qquad A = 10$	1
	AB=10=AC $AC^2=100$	
	$(-5-x)^2 + (3-y)^2 = (5-x)^2 + (3-y)^2$	1
	20x =0	1
	x=0	1⁄2
	$(3-y)^2=75$	
	$3-y = \pm 5\sqrt{3}$	
	y=3-5√3	
	y= -5.5	
	The coordinates of the third vertex are $(0,-5.5)$	1⁄2
29(a).	Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that $\angle PTQ = 2 \angle OPQ$.	

	P = TO	
Sol.	$\Rightarrow \angle \mathrm{TPQ} = \angle \mathrm{TQP}$	1
	Let \angle PTQ be θ	
	$\Rightarrow \angle \text{TPQ} = \angle \text{TQP} = \frac{180^\circ - \theta}{2} = 90^\circ - \frac{\theta}{2}$	1
	Now $\angle OPT = 90^{\circ}$ $\Rightarrow \angle OPQ = 90^{\circ} - (90^{\circ} - \frac{\theta}{2}) = \frac{\theta}{2}$	
	$\angle PTQ = 2 \angle OPQ$	1
	OR	
29(b).	In the given figure, a circle is inscribed in a quadrilateral ABCD in which $\angle B = 90^{\circ}$. If AD=17 cm, AB = 20 cm and DS = 3 cm, then find the radius of the circle.	

Sol.	A A A A A A A A A A A A A A A A A A A	
	DR = DS = 3 cm	1/2
	$\therefore AR = AD - DR = 17 - 3 = 14 cm$ $\Rightarrow AQ = AR = 14 cm$	1 ½
	$\therefore QB = AB - AQ = 20 - 14 = 6 \text{ cm}$	1/2
	Since $QB = OP = r$ \therefore radius = 6 cm	1⁄2
30.	Prove that: $\frac{\tan \theta + \sec \theta - 1}{\tan \theta - \sec \theta + 1} = \frac{1 + \sin \theta}{\cos \theta}$	
Sol.	LHS= $\frac{(\tan \theta + \sec \theta) - (\sec^2 \theta - \tan^2 \theta)}{\tan \theta - \sec \theta + 1}$ $= \frac{(\tan \theta + \sec \theta) (1 - \sec \theta + \tan \theta)}{\tan \theta - \sec \theta + 1}$	1 1
	$= tan\theta + sec\theta$	1/2
	$=\frac{1+\sin\theta}{\cos\theta}=\text{RHS}$	1⁄2
31(a).	A room is in the form of cylinder surmounted by a hemi-spherical dome. The base radius of hemisphere is one-half the height of cylindrical part.	
	Find total height of the room if it contains $\left(\frac{1408}{21}\right)m^3$ of air. Take	
	$\left(\pi = \frac{22}{7}\right)$	

Sol.	Let h be height of cylindrical part and r be radius of hemisphere	1⁄2
	Volume of room $= 2\pi r^3 + \frac{2}{3}\pi r^3 = \frac{1408}{21}$	1
	\Rightarrow r = 2	1⁄2
	Therefore, h=4	1/2
	Height of the room is $= 6m$	1⁄2
	OR	
31(b).	An empty cone is of radius 3 cm and height 12 cm. Ice-cream is filled	
	in it so that lower part of the cone which is $\left(\frac{1}{6}\right)^{th}$ of the volume of the	
	cone is unfilled but hemisphere is formed on the top. Find volume of the ice-cream. (Take $\pi = 3.14$)	
Sol.	Volume of the cone = $=\frac{1}{3} \times \pi \times 9 \times 12 = 36\pi cm^3$	1
	Volume of ice-cream in the cone = $\frac{5}{6} \times 36 \times \pi = 30\pi cm^3$	1⁄2
	Volume of ice-cream on top $=\frac{2}{3} \times 27 \times \pi = 18\pi cm^3$	1
	Total volume of the ice-cream = $(30\pi + 18\pi) = 48\pi cm^3$	
	$=48\times3.14=150.72cm^3$	1⁄2
	SECTION D	
	This section comprises of Long Answer (LA) type questions of 5 marks each.	

22	If a line is drawn parallel to one side of a triangle to intersect the other	
52.	two sides at distinct points, prove that the other two sides are divided in	
	the same ratio.	
Sol.	Correct Given, to prove, figure, construction	2
	Correct proof	3
22(a)	The angle of elevation of the top of a tower 24 m high from the foot of	
55(a).	another tower in the same plane is 60° . The angle of elevation of the top	
	of second tower from the foot of the first tower is 30° . Find the distance	
	between two towers and the height of the other tower. Also, find the	
	length of the wire attached to the tops of both the towers.	
G 1	G B	
501.		
		1 mark
		for
		correct
		figure
	h	
	Let AB and CD be the given towers.	
	$\tan 20^\circ = \frac{1}{h} + \pi = h \sqrt{2}$ (i)	1
	$\lim_{x \to \infty} 50^{\circ} - \frac{1}{\sqrt{3}} \xrightarrow{x} x = 11\sqrt{3} \xrightarrow{x} (1)$	1
	~ 24 -	
	$\tan 60^\circ = \sqrt{3} = \frac{2}{x} \Rightarrow x = \frac{1}{\sqrt{3}} \text{ or } 8\sqrt{3}$ (ii)	1
	using (i) and (ii)	
	$r = 9\sqrt{2}$ and $h = 9$	1 1
	$X = 8\sqrt{3}$ and $n = 8$	-+-
1		22
		22
		2 2
	length of wire = $\sqrt{BE^2 + x^2} = \sqrt{256 + 192} = \sqrt{448} \text{ m} = 8\sqrt{7} \text{ m}$	1

	OR	
33(b).	A spherical balloon of radius r subtends an angle of 60^0 at the eye of an	
55(6).	observer. If the angle of elevation of its centre is 45° from the same point,	
	then prove that height of the centre of the balloon is $\sqrt{2}$ times its radius.	
Sol.	B A	1 mark for correct figure
	Let Point B represents observer. $\therefore \angle QBP = 60^\circ; \angle ABO = 45^\circ$	
	Using geometry $\angle PBO = \frac{1}{2} \times 60^\circ = 30^\circ$	1
	Now, $\frac{r}{OB} = \sin 30^\circ = \frac{1}{2} \Rightarrow OB = 2r$ — (i)	1
	Also $\frac{OA}{OB} = \sin 45^\circ = \frac{1}{\sqrt{2}} \Rightarrow OB = OA \sqrt{2}$ (ii)	1
	Using (i) and (ii) $OA = \sqrt{2} r$	1
	or height of center of balloon = $\sqrt{2}$ r units	
34.	A chord of a circle of radius 14 cm subtends an angle of 60^0 at the centre.	
	Find the area of the corresponding minor segment of the circle. Also find	
	the area of the major segment of the circle.	
Sol.	Area of minor segment = $\frac{22}{7} \times 14 \times 14 \times \frac{60}{360} - \frac{1}{2} \times 14 \times 14 \times \frac{\sqrt{3}}{2}$	1+1
	$= \left(\frac{308}{3} - 49\sqrt{3}\right) cm^2 \text{ or } 17.9 \text{ cm}^2$	1

	Area of major segment = $\frac{22}{7} \times 14 \times 14 - \left(\frac{308}{3} - 49\sqrt{3}\right)$	
	$=616 - \frac{308}{3} + 49\sqrt{3}$	1
	$= \left(\frac{1540}{3} + 49\sqrt{3}\right) cm^2 \text{ or } 598.1 \text{ cm}^2$	1
35(a).	The ratio of the 11 th term to 17 th term of an A.P. is 3:4. Find the ratio of	
	5 th term to 21 st term of the same A.P. Also, find the ratio of the sum of first 5 terms to that of first 21 terms	
Sol.	Given $\frac{a+10d}{a+16d} = \frac{3}{4}$	1
	\Rightarrow 4a + 40d = 3a + 48d	1
	\Rightarrow a = 8d (i)	1
	therefore $\frac{a_5}{a_{21}} = \frac{a+4d}{a+20d} = \frac{3}{7}$ using(i)	1
	$a_5: a_{21} = 3:7$	
	$\frac{s_5}{s_{21}} = \frac{\frac{5}{2}(2a+4d)}{\frac{21}{21}(2a+20d)} = \frac{5 \times 20d}{21 \times 36d} = \frac{25}{189}$	2
	$\frac{2}{2} \left(2 x + 2 x x \right)$	
	OR	
25(1)	250 logs are stacked in the following manner:	
35(b).	22 logs in the bottom row, 21 in the next row, 20 in the row next to it and so	
	on (as shown by an example). In how many rows, are the 250 logs placed and	
	how many logs are there in the top row?	
	(Example)	
Sol.	Let the number of rows be n.	
	A.P. formed is 22, 21, 20, 19,	

	Here $a = 22$, $d = -1$ Sn = 250				
	$\therefore 250 = \frac{n}{2} [44 + (n-1)(-1)]$				
	$\Rightarrow n^2 - 45n + 500 = 0$				
	$\Rightarrow (n-25) (n-20) = 0$				
	$n \neq 25 \therefore n = 20$				
	logs in top row = $a_{20} = 22 + 19 (-1) = 3$				
	SECTION E				
	This section comprises of 3 case-study based questions of 4 marks each.				
36.	While designing the school year book, a teacher asked the student that the length and width of a particular photo is increased by x units each to double the area of the photo. The original photo is 18 cm long and 12 cm wide. Based on the above information, answer the following questions: (I) Write an algebraic equation depicting the above information. (II) Write the corresponding quadratic equation in standard form. (III) What should be the new dimensions of the enlarged photo? $\underbrace{x + \frac{18 \text{ cm}}{\text{Photo}} = \frac{12 \text{ cm}}{x}$ OR Can any rational value of x make the new area equal to $220cm^2$				
Sol.	(i) $(18 + x) (12 + x) = 2(18 \times 12)$	1			
	(ii) $x^2 + 30x - 216 = 0$	1			
	(iii) Solving: $x^2 + 30x - 216 = 0$				
	$\Rightarrow (x+36)(x-6) = 0$				
	$x \land -30 \cdots \rightarrow x = 0.$	1			
	new dimensions are $24 \text{ cm} \times 18 \text{ cm}$	_			

	OR					
	(iii) If $(18 + x) (12 + x) = 220$					
	then $x^2 + 30x - 4 = 0$	1				
	Here $D = 900 + 16 = 916$ which is not a perfect square.	1				
	Thus we can't have any such rational value of x.					
37.	India meteorological department observes seasonal and annual rainfall					
0,1	every year in different sub-divisions of our country.					
	It helps them to compare and analyse the results. The table given below shows sub-division wise seasonal (monsoon) rainfall (mm) in 2018:					
	Rainfall (mm) Number of Sub-divisions					
	200-400 2					
	400-600 4					
	600-800 7					
	800-1000 4					
	1000-1200 2					
	1200-1400 3					
	1400 - 1600 1					
	1600-1800 1					
	Based on the above information, answer the following questions:(I) Write the modal class.(II) Find the median of the given data.					

	OR					
	(II) Find the mean rainfall in this season.					
	(III) If sub-division having at least 1000 mm rainfall during monsoon season,					
	is considered good rainfall sub-division, then how many sub-divisions					
	had good rainfall?					
Sol.	(i) Moda	l Class is	600-800			1
	(ii) $\frac{N}{2} = 12$, media	an class is	600 - 800			1⁄2
			2			
	Rainfall	x _i	fi	cf.	Y	
	200 - 400	300	2	2		
	400 - 600	500	4	6		
	600 - 800	700	7	13		
	800 - 1000	900	4	17		
	1000 - 1200	1100	2	19		
	1200 - 1400	1300	3	22		½ for
	1400 - 1600	1500	1	23		correct
	1600 - 1800	1700	1	24		table
		A	24			
	Median = $600 + \frac{200}{7} (12 - 6)$					
$=\frac{5400}{7}$ or 771.4						1
	OR (ii)					
	Rainfall	x _i	fi	$f_i x_i$		
	200 - 400	300	2	600		
	400 - 600	500	4	2000		

	Based on above information:	
	(a) find the length of AB.	
	(b) find the length of OB.	
	(c) find the length of AP.	
	OR	
	Find the length of PQ	
Sol.	(i)tan 30° = $\frac{1}{\sqrt{3}} = \frac{75}{AB}$	$\frac{1}{2}$
	$\Rightarrow AB = 75\sqrt{3} cm$	$\frac{1}{2}$
	(ii)sin $30^\circ = \frac{1}{2} = \frac{75}{0B}$	$\frac{1}{2}$
		1
	\Rightarrow OB = 150 cm	$\frac{1}{2}$
		_
	(iii) $QB = 150 - 75 = 75 \text{ cm}$	1
	\Rightarrow Q is mid point. of OB	1
	Since PO 11 AO therefore B is mid point of AB	
	Since FQ if AO therefore F is find point of AB $75.\sqrt{3}$	1
	Hence AP = $\frac{75\sqrt{5}}{2}$ cm.	
	OR 150 75 75 m	1
	(iii) $QB = 130 - 73 = 73$ cm Now $A BOP \sim A BOA$	$\overline{2}$
	$\Rightarrow \frac{QB}{QB} = \frac{PQ}{QA}$	
	$\Rightarrow \frac{1}{2} = \frac{PQ}{75}$	1
	2 75	1
	\Rightarrow PQ = $\frac{\pi}{2}$ cm	$\overline{2}$
		1