Usefull for CBSE EXAM 2024

MARKING SCHEME MATHEMATICS (Subject Code–041) (PAPER CODE: 30/C/2)

Q. No.	EXPECTED OUTCOMES/VALUE POINTS	Marks
	SECTION A	
	Questions no. 1 to 18 are multiple choice questions (MCQs) and	
	questions number 19 and 20 are Assertion-Reason based questions of 1	
	mark each	
1.	The value of k for which the quadratic equation $2x^2 - 10x + k = 0$ has real and equal roots, is :	
	(a) $\frac{25}{2}$ (b) $\frac{1}{5}$	
	(c) $-\frac{5}{2}$ (d) $\frac{1}{2}$	
Sol.	(a) $\frac{25}{2}$	1
2.	If AB is a chord of a circle with centre at $O(2, 3)$, where the coordinates of A and B are (4, 3) and (x, 5) respectively, then the value of x is :	
	(a) 3 (b) 2	
	(c) 5 (d) 4	
Sol.	(b) 2	1
3.	The zeroes of the polynomial $3x^2 + 11x - 4$ are :	
	(a) $\frac{1}{2}, -4$ (b) $\frac{1}{4}, -3$	
	(a) $\frac{1}{2}, -4$ (b) $\frac{1}{4}, -3$ (c) $\frac{1}{3}, -4$ (d) $\frac{1}{3}, 4$	
Sol.	$(c)\frac{1}{3}, -4$	1
4.	In a family of two children, the probability of having at least one girl is :	
	(a) $\frac{1}{2}$ (b) $\frac{2}{5}$	
	(c) $\frac{3}{4}$ (d) $\frac{1}{4}$	
Sol.	$(c)\frac{3}{4}$	1

5.	The distance of the point	(4, 7) from the	x-axis is :		
	(a) 7 units	(1, 17) Holli (h	P 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
	(c) 4 units	(d	1) 10 units		
Sol.	(a) 7 units			1	
6.	$2\cos^2\theta (1 + \tan^2\theta)$ is equa	l to :			
	(a) 0	(b)	1		
	(c) 2	(d)	3		
Sol.	(c) 2			1	
7.	Graphically, the pair of equ	uations – 6x -	-2y = 21 and $2x - 3y + 7 = 0$		
	represents two lines which a				
	(a) intersecting exactly a	120 Con-2019 00000 - 11000			
	(b) intersecting exactly a	t two points			
	(c) coincident				
	(d) parallel				
Sol.	(a) intersecting exactly at one	e point		1	
8.	If a bicycle wheel makes	5000 revolutio	ons in moving 11 km, then the		
	diameter of the wheel is :				
	(a) 65 cm	(b)	35 em		
	(c) 70 cm	(d)	50 cm		
Sol.	(c) 70 cm			1	
9.	The length of the tangent d	rawn from a p	oint P, whose distance from the		
	centre of a circle is 25 cm, and the radius of the circle is 7 cm, is :				
	(a) 22 cm	(b)	24 cm		
	(c) 25 cm	(d)	28 cm		
Sol.	(b) 24 cm			1	

10.	In the figure, PA and PB are tw	vo tangents to the circle with centre O	
	such that \angle APB = 50°. Then, the	measure of \angle OAB is :	
	P 50° A O B)	
	(a) 25°	(b) 50°	
	(c) 75°	(d) 100°	
Sol.	(a) 25°		1
11.	OACB is a quadrant of a circle wi	th centre O and radius 7 cm where ACB	
	is the arc. Then the perimeter of t		
	(a) 15 cm	(b) 50 cm	
	(e) 25 cm	(d) 44 cm	
Sol.	(c) 25 cm		1
12.	If $2x$, $x + 10$, $3x + 2$ are three	consecutive terms of an A.P., then the	
	value of x is :	2	
	(a) 4	(b) 5	
	(e) 6	(d) 8	
Sol.	(c) 6		1
13.	In a single throw of two dice, the	e probability of getting a sum of 10 is :	
	(a) $\frac{1}{10}$	(b) $\frac{1}{2c}$	
	12	36	
	(a) $\frac{12}{12}$ (c) $\frac{1}{6}$	(b) $\overline{36}$ (d) $\frac{1}{4}$	
Sol.	(a) $\frac{1}{12}$		1

14.	The height of a tower is 20 m. The length of its sh	adow made on the level
	ground when the Sun's altitude is 60°, is :	
	(a) $\frac{20}{\sqrt{3}}$ m (b) $\frac{20}{3}$ m	
	(c) $20\sqrt{3}$ m (d) 20 m	
Sol.	$(a)\frac{20}{\sqrt{3}}m$	1
15.	In the given figure, DE $ $ BC and all mean centimetres. The length of AE is : A	surements are given in
	B B B C	
	(a) 2 cm (b) 2.25	cm
	(c) 2.5 cm (d) 2.75	
<u> </u>		
Sol.	(b) 2.25 cm	1
16.	A number is chosen from the numbers 1, 2, 3 number is chosen from the numbers 1, 4, 9 $P(xy < 9)$ is :	
	(a) $\frac{1}{9}$ (b) $\frac{3}{9}$	
	(c) $\frac{5}{9}$ (d) $\frac{7}{9}$	
Sol.	$(c)\frac{5}{9}$	1

17.	A vertical pole 10 m long casts a shadow of length 5 m on the ground. At the same time, a tower casts a shadow of length 12.5 m on the ground. The height of the tower is :					
	(a) 20 m	(b) 22 m				
	(c) 25 m	(d) 24 m				
Sol.	(c) 25 m		1			
18.	Using empirical relationsh 7.2 and the median 7.1 , is :	ip, the mode of a distribution whose mean is				
	(a) 6·2	(b) 6·3				
	(c) 6·5	(d) 6·9				
Sol.	(d) 6.9		1			
	1 mark each. Two statements other is labelled as Reason (R the codes (a), (b), (c) and (d) as (a) Both Assertion (d)	are Assertion and Reason based questions carrying is are given, one labelled as Assertion (A) and the c). Select the correct answer to these questions from is given below. A) and Reason (R) are true and Reason (R) is the on of the Assertion (A).				
	(b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not nation of the Assertion (A).				
		rue, but Reason (R) is false. 'alse, but Reason (R) is true.				
19.	Assertion (A) : A fair die is prime numbe	s thrown once. The probability of getting a er is $\frac{1}{2}$.				
	Reason (R) : A natural ne factors.	umber is a prime number if it has only two				
Sol.	(a) Both Assertion (A) and a explanation of the Assertion	Reason (R) are true and Reason (R) is the correct n (A).	1			
20.	probability o	, Sania and Ashnam play a tennis match. The f Sania winning the match is 0.79 and that of ning the match is 0.21.				
	Reason(R): The sum of p	probabilities of two complementary events is 1.				
Sol.	(a) Both Assertion (A) and explanation of the Assertion	Reason (R) are true and Reason (R) is the correct	1			

	SECTION B This section comprises very short answer (VSA) type questions of 2	
	marks each.	
21 (a).	If A(-2 , -1), B(a, 0), C(4, b) and D(1, 2) are the vertices of a parallelogram ABCD, then find the values of a and b.	
Sol.	Coordinates of the mid-point of AC = Coordinates of the mid-point of BD $\left(\frac{-2+4}{2}, \frac{-1+b}{2}\right) = \left(\frac{a+1}{2}, \frac{0+2}{2}\right)$	1
	$\therefore \frac{-2+4}{2} = \frac{a+1}{2} \implies a = 1$	1/2
	and $\frac{-1+b}{2} = \frac{0+2}{2} \implies b = 3$	1/2
	OR	
21 (b).	The three vertices of a parallelogram ABCD, taken in order, are A(-1, 0), B(3, 1) and C(2, 2). Find the coordinates of the fourth vertex D.	
Sol.	Let the coordinates of fourth vertex D be (x, y)	
	Coordinates of the mid-point of AC = Coordinates of the mid-point of BD	
	$\left(\frac{-1+2}{2},\frac{0+2}{2}\right) = \left(\frac{3+x}{2},\frac{1+y}{2}\right)$	1
	$\therefore \frac{-1+2}{2} = \frac{3+x}{2} \implies x = -2$	1/2
	and $\frac{0+2}{2} = \frac{1+\mathbf{y}}{2} \implies \mathbf{y} = 1$	1/2
22.	In the given figure, $\frac{AO}{OC} = \frac{BO}{OD} = \frac{1}{2}$ and $AB = 5$ cm. Find the length of	
	DC. $A \rightarrow B$ $D \rightarrow C$	
Sol.	In $\triangle AOB$ and $\triangle COD$	
	$\frac{AO}{OC} = \frac{BO}{OD}$ (Given)	
	$\angle AOB = \angle COD (V.O.A.)$	
	$\therefore \Delta AOB \sim \Delta COD (SAS rule)$	1

	$\frac{AO}{OC} = \frac{AB}{CD} (C.P.S.T.)$	
	$\frac{1}{2} = \frac{5}{CD}$	
	\Rightarrow CD = 10 cm	1
23 (a).	If $\sqrt{2}$ is given as an irrational number, then prove that $(5 - 2\sqrt{2})$	
	is an irrational number.	
Sol.	Let us assume that $5 - 2\sqrt{2}$ be a rational number.	
	$\therefore 5 - 2\sqrt{2} = \frac{p}{a}$, where p and q are integers and q $\neq 0$.	1
	$\Rightarrow \sqrt{2} = \frac{5q - p}{2q}$	1/2
	29	, -
	RHS is a rational number. So, LHS is also a rational number which contradict	
	the given fact that $\sqrt{2}$ is an irrational number.	
	So, our assumption is wrong.	1/
	Hence, $5 - 2\sqrt{2}$ is an irrational number.	1/2
	OR	
23 (b).	Check whether 6^n can end with the digit 0 for any natural	
	number n.	
Sol.	If the number 6^n ends with the digit 0, then it should be divisible by 2 and 5.	
	But prime factorisation of 6^n is $(2 \times 3)^n$.	1
	\therefore Prime factorisation of 6 ⁿ does not contain prime number 5.	1
	Hence, 6 ⁿ can't end with the digit 0.	1
24.	A circle is touching the side BC of a Δ ABC at the point P and touching	
	AB and AC produced at points Q and R respectively.	
	Prove that $AQ = \frac{1}{2}$ (Perimeter of \triangle ABC).	
	A B C R ·	

Usefull for CBSE EXAM 2024

Sol.	Perimeter of $\triangle ABC = AB + BC + CA$	
	= AB + BP + CP + CA	1/2
	$= AB + BQ + CR + CA \qquad [BP = BQ; CP = CR]$	1/2
	= AQ + AR	1/2
	$= AQ + AQ \qquad [AQ = AR]$ $= 2 AQ$	72
		1/2
	$\therefore AQ = \frac{1}{2} (Perimeter of \Delta ABC)$	
25.	Find the ratio in which the point (-1, k) divides the line segment joining	
	the points $(-3, 10)$ and $(6, -8)$. Hence, find the value of k.	
Sol.	Let C $(-1, k)$ be divides the line segment joining the points A $(-3, 10)$	
501.	and B $(6, -8)$ in the ratio m : 1.	
	Using section formula	
	$-1 = \frac{-3+6m}{m+1}$	
	$\Rightarrow m = \frac{2}{7}$	1
	Hence, required ratio is 2 : 7	-
	-	1
	$k = \frac{10 \times 7 - 8 \times 2}{2 + 7} = 6$	
	SECTION C	
	This section comprises of Short Answer (SA) type questions of 3 marks	
	each.	
26.	State and prove Basic Proportionality theorem.	
Sol.	Correct statement of Basic Proportionality	1/2
	Correct figure, given, to prove and construction	1
	Correct proof	11/2
27 (a).	Find the sum of all integers between 50 and 500, which are	
	divisible by 7.	
Sol.	56, 63,, 497	1
	Here $a = 56$ and $d = 7$	-
	Let $a_n = 497$	
	$\implies 56 + (n-1) \times 7 = 497$	$\frac{1}{2}$
	\Rightarrow n = 64	1/2
	$S_{64} = \frac{64}{2} \times (56 + 497) = 17696$	1
	OR	
	UK	

27 (b).	How many numbers lie between 10 and 300, which when divided	
	by 4 leave a remainder 3 ? Also, find their sum.	
Sol.	11, 15,, 299 Here $a = 11$ and $d = 4$	1
	Let $a_n = 299$ $\implies 11 + (n - 1) \times 4 = 299$ $\implies n = 73$	$\frac{1/2}{1/2}$
	$S_{73} = \frac{73}{2} \times (11 + 299) = 11315$	1
28.	Sum of the areas of two squares is 468 m^2 . If the difference of their perimeters is 24 m, find the lengths of the sides of the two squares.	
Sol.	Let the lengths of the sides of the two squares be 'x' m and 'y' m s.t. $x > y$	
	A.T.Q. $x^{2} + y^{2} = 468$ 1 4x - 4y = 24	1/2
	$\Rightarrow x - y = 6 \qquad(2)$	1/2
	From (1) and (2), we get	
	$y^{2} + 6y - 216 = 0$ $\Rightarrow y = 12 \text{ and } y = -18$	1
	But side of a square is always positive,	
	So, y = 12	$\left \right + 1$
	and $x = 18$	
20	Hence, the lengths of the sides of two squares are 12 m and 18 m.	
29.	Two water taps together can fill a tank in $3\frac{1}{3}$ hours. The tap of larger	
	diameter takes 5 hours less than the smaller one to fill the tank	
	separately. Find the time in which each tap can fill the tank separately.	
Sol.	Let the time taken by the tap of smaller diameter to fill the tank separately be 'x' hours and the time taken by the tap of larger diameter to fill the tank separately be $(x - 5)$ hours.	
	A.T.Q. $\frac{1}{x} + \frac{1}{x-5} = \frac{3}{10}$ $\implies 3x^2 - 35x + 50 = 0$ $\implies (x - 10) (3x - 5) = 0$	1 1
	$\Rightarrow (x - 10) (3x - 5) = 0$ $\Rightarrow x = 10 \text{ or } x = \frac{5}{3}$	
	But $x = \frac{5}{2}$ is not possible, so $x = 10$	1/2

	\therefore time taken by the tap of smaller diameter to fill the tank separately is 10 hours	
	10 hours and time taken by the tap of larger diameter to fill the tank separately is	- 1/2
	10 – 5 = 5 hours	
30 (a).	Find the area of the minor and the major sectors of a circle with	
	radius 6 cm, if the angle subtended by the minor arc at the centre	
	is 60°. (Use $\pi = 3.14$)	
Sol.	Area of minor sector = $\frac{3.14 \times (6)^2 \times 60^\circ}{360^\circ}$	
	= 18.84	$\frac{1}{\frac{1}{2}}$
	Hence, area of minor segment is 18.84 cm^2	72
	Area of major sector = Area of circle $-$ Area of minor sector	
	$= 3.14 \times (6)^2 - 18.84$	1
	= 94.2	1/2
	Hence, area of major segment is 94.2 cm ²	
	OR	
30 (b).	If a chord of a circle of radius 10 cm subtends an angle of 60° at the	
	centre of the circle, find the area of the corresponding minor	
	segment of the circle. (Use $\pi=3{\cdot}14$ and $\sqrt{3}~=1{\cdot}73$)	
Sol.	Area of minor segment = $\frac{3.14 \times (10)^2 \times 60^\circ}{360^\circ} - \frac{1}{2} \times (10)^2 \times \frac{\sqrt{3}}{2}$	2
	$=\frac{314}{6} - \frac{173}{4}$	 1⁄2
	0 7	
	$=9\frac{1}{12}$ or 9.08	1/2
	Hence, area of minor segment is 9.08 cm ² .	
31.	In a \triangle ABC, \angle A = x°, \angle B = $(3x - 2)^{\circ}$ and \angle C = y°. Also, \angle C – \angle B = 9°.	
	Determine the three angles of the triangle.	
Sol.	$\angle A + \angle B + \angle C = 180^{\circ}$	
	$\therefore x + (3x - 2) + y = 180$	
	$\Rightarrow 4x + y = 182 \qquad \qquad$	1
	Given, $\angle C - \angle B = 9^{\circ}$	
	$\therefore \mathbf{y} - (3\mathbf{x} - 2) = 9$	1/
	\Rightarrow y - 3x = 7 (2)	1/2
	Solving (1) and (2), we get	1
	x = 25 and $y = 82$	1
	Hence, $\angle A = 25^\circ$, $\angle B = (3 \times 25 - 2)^\circ = 73^\circ$ and $\angle C = 82^\circ$	1/2

	This section co	mprises of l	SECTION D Long Answer (La each.	A) type qu	uestions of	5 marks	
32.	233	The second	ights (in cm) of 5 owing data was ob		class X of a	a school	
		(in em)	Number of girls	united .			
	-3355	- 130	2				
		- 140	8				
	100000	- 150	12				
	150	- 160	20				
	160	- 170	8				
	To	otal	50				
	Find the mean	and mode of	the above data.				
Sol.	Height (in cm) 120 - 130 130 - 140 140 - 150 150 - 160 160 - 170 Total Mean = 145 + $\frac{24}{50}$ = 149.8 ∴ mean height is Modal class is 15 Mode = 150 + $\frac{1}{(23)}$ = 154 ∴ modal height is	$\frac{149.8 \text{ cm}}{(0 - 160)}$	$ \begin{array}{r} 125\\ 135\\ 145 = a\\ 155\\ 165\\ \end{array} $	u_i -2 -1 0 1 2	$f_i u_i$ - 4 - 8 0 20 16 24 Correct	t table	1½ 1 ½ ½ 1 ½

33 (a).		
00 (u).	A tent is in the shape of a right circular cylinder up to a height of	
	3 m and then a right circular cone, with a maximum height of	
	$13{\cdot}5$ m above the ground. Calculate the cost of painting the inner	
	side of the tent at the rate of \gtrless 2 per square metre, if the radius of	
	the base is 14 m.	
Sol.	Height of conical part = $13.5 - 3 = 10.5$ m	1/2
	Slant height = $\sqrt{(14)^2 + (10.5)^2} = 17.5$ m	1
	SA of tent = CSA of conical part + CSA of cylindrical part	2
	$=\left(\frac{22}{7} \times 14 \times 17.5\right) + \left(2 \times \frac{22}{7} \times 14 \times 3\right)$	2
	$= 1034 \text{ m}^2$	1/2
	Cost of painting @ $\gtrless 2$ per m ² = 1034 × 2 = $\gtrless 2068$	1
	OR	
33 (b).	A solid wooden toy is in the shape of a right circular cone mounted	
	on a hemisphere of same radius. If the radius of the hemisphere is	
	4.2 cm and the total height of the toy is 10.2 cm, find the volume of	
	the wooden toy. Also, find the total surface area of the toy.	
Sol.	Height of conical part = $10.2 - 4.2 = 6$ cm	1/2
	Volume of toy = Volume of conical part + Volume of hemispherical part $\begin{pmatrix} 1 & 22 \\ 2 & 22 \end{pmatrix}$	1
	$= \left(\frac{1}{3} \times \frac{22}{7} \times (4.2)^2 \times 6\right) + \left(\frac{2}{3} \times \frac{22}{7} \times (4.2)^3\right)$	1
	= 266.112	1
	Hence, Volume of toy is 266.112 cm^3	
	Slant height of conical part = $\sqrt{(4.2)^2 + (6)^2} \approx 7.32$ cm	1
	TSA of the toy = CSA of hemispherical part + CSA of conical part $\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 & 2 \end{pmatrix}$	1
	$= \left(2 \times \frac{22}{7} \times (4.2)^2\right) + \left(\frac{22}{7} \times 4.2 \times 7.32\right)$	1
	= 207.504	1/2
	Hence, TSA of toy is 207.504 cm ²	

35 (a).	Prove that :	
	$\frac{1+\sin\theta}{1-\sin\theta} - \frac{1-\sin\theta}{1+\sin\theta} = 4\tan\theta\sec\theta$	
	$1 - \sin \theta \qquad 1 + \sin \theta$	
Sol.	LHS = $\frac{(1+\sin\theta)^2 - (1-\sin\theta)^2}{(1+\sin\theta)(1-\sin\theta)}$	2
		2
	$=\frac{4\sin\theta}{1-\sin^2\theta}$	1
	$=\frac{4\sin\theta}{\cos^2\theta}$	1
	$= 4 \tan \theta \sec \theta = \text{RHS}$	1
	OR	
35 (b).	Evaluate :	
	$\frac{\tan^2 60^\circ + 4 \sin^2 45^\circ + 3 \sec^2 60^\circ + 5 \cos^2 90^\circ}{\csc 30^\circ + \sec 60^\circ - \cot^2 30^\circ}$	
Sol.	$(\sqrt{3})^2 + 4\left(\frac{1}{\sqrt{2}}\right)^2 + 3(2)^2 + 5(0)^2$	
	$\frac{(\sqrt{2})}{2+2-(\sqrt{3})^2}$	3
	3+2+12+0	1
	=	1
	= 17	1
	SECTION E	
	This section comprises of 3 case-study based questions of 4 marks each.	

r		,
36.	 February 14 is celebrated as International Book Giving Day and many countries in the world celebrate this day. Some people in India also started celebrating this day and donated the following number of books of various subjects to a public library : History = 96, Science = 240, Mathematics = 336. These books have to be arranged in minimum number of stacks such that each stack contains books of only one subject and the number of books on each stack is the same. Based on the above information, answer the following questions : (i) How many books are arranged in each stack ? (ii) How many stacks are used to arrange all the Mathematics books ? (iii) (a) Determine the total number of stacks that will be used for arranging all the books. OR (iii) (b) If the thickness of each book of History, Science and Mathematics is 1.8 cm, 2.2 cm and 2.5 cm respectively, then find the height of each stack of History, Science and Mathematics books. 	
Sol.	(i) HCF (96, 240, 336) = 48	1
	(ii) Number of stacks $=\frac{336}{48}=7$	1
	(iii) (a) Total number of stacks $=\frac{96}{48} + \frac{240}{48} + \frac{336}{48}$	1
	= 14 OB	1
	OR (b) Height of each stack of History = $48 \times 1.8 = 86.4$ cm Height of each stack of Science = $48 \times 2.2 = 105.6$ cm Height of each stack of Mathematics = $48 \times 2.5 = 120$ cm	1 mark for 1 correct answer, 1½ mark for two correct answer and 2 marks for all correct answers.

37.	 While playing in a garden, Samaira saw a honeycomb and asked her mother what is that. Her mother replied that it's a honeycomb made by honey bees to store honey. Also, she told her that the shape of the honeycomb formed is a mathematical structure. The mathematical representation of the honeycomb is shown in the graph. Image: the honeycomb is shown in the honey	
Sol.	$x^2 + px + 45$ is 144, then find the value of p.	1
	(ii) 7 and -7 (iii) (a) $-(a + 1) = 2 + (-3) \Rightarrow a = 0$ $b = 2 \times (-3) \Rightarrow b = -6$ OR (b) Let α and β be the zeroes of given polynomial Here, $\alpha + \beta = -p$ and $\alpha \beta = 45$	1 1 1 1⁄2
	$(\alpha - \beta)^2 = 144$ $\Rightarrow (\alpha + \beta)^2 - 4\alpha\beta = 144$ $\Rightarrow (-p)^2 - 4 \times 45 = 144$ $\Rightarrow p = \pm 18$	1/2 1/2 1/2

38.	In a park, four poles are standing at positions A, B, C and D around the circular fountain such that the cloth joining the poles AB, BC, CD and DA touches the circular fountain at P, Q, R and S respectively as shown in the figure. $ \begin{array}{c} B \\ \hline $	
Sol.	(i) 90° (ii) $AB + DC = BC + DA$ Given, $AB = AD$ $\Rightarrow BC = DC$ So, ABCD is a Kite (iii) (a) $DS = DR = 7 \text{ cm}$ AD = 11 cm 7 + SA = 11 $\Rightarrow SA = 4 \text{ cm}$ $\therefore AP = SA = 4 \text{ cm}$ OR (b) $\angle QOR = 180^{\circ} - 60^{\circ}$ $= 120^{\circ}$	$ \begin{array}{c} 1 \\ \frac{1}{\frac{1}{2}} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ 1 \\ 1 \end{array} $
	- 120	