ACBSE Coaching for DKathematics and Science

Solved Electricity numerical for class 10

1. Question: Two bulbs have ratings $100 \mathrm{~W}, 220 \mathrm{~V}$ and $60 \mathrm{~W}, 220 \mathrm{~V}$ respectively. Which one has a greater resistance?

Answer: $\mathrm{P}=\mathrm{VI}=\mathrm{V}^{2} / \mathrm{R}$ For the same V, R is inversely proportional to P .
Therefore, the bulb $60 \mathrm{~W}, 220 \mathrm{~V}$ has a greater resistance.
2. Question: A torch bulb has a resistance of 1Ω when cold. It draws a current of 0.2 A from a source of 2 V and glows. Calculate
(i) the resistance of the bulb when glowing and
(ii) explain the reason for the difference in resistance.

Answer:
(i) When the bulb glows:
$V=I R$---- Ohm's law $R=V / I=2 / .2=10 \Omega$
(ii) Resistance of the filament of the bulb increases with increase in temperature. Hence when it glows its resistances is greater than when it is cold.
3. Question: Calculate the resistance of 1 km long copper wire of radius 1 mm . (Resistivity of copper $=1.72 \times 10^{-8}$

Answer: $\mathrm{L}=1 \mathrm{~km}=1000 \mathrm{~m}$
$R=1 \mathrm{~mm}=1 \times 10^{-3}$
$p=1.72 \times 10-8 \mathrm{~W} \mathrm{~m}$
Area of cross section $=\mathrm{pr}^{2}=3.14 \times 10^{-3} \times 10^{-3}=3.14 \times 10^{-6}$
$\mathrm{R}=\mathrm{pl} / \mathrm{A}=\left(1.72 \times 10^{-8} \times 1000\right) / 3.14 \times 10^{-6}=5.5 \mathrm{~W}$
4. Question: When a potential difference of 2 V is applied across the ends of a wire of 5 m length, a current of 1 A is found to flow through it. Calculate:
(i) The resistance per unit length of the wire
(ii) the resistance of 2 m length of this wire
(iii) The resistance across the ends of the wire if it is doubled on itself.

Answer: (i) $\mathrm{V}=\mathrm{I}$ R ----- Ohm's law $\mathrm{R}=\mathrm{V} / \mathrm{I}=2 / 1=2$ Ohm
Resistance per unit length: $2 / 5=0.4 \mathrm{Ohm} / \mathrm{m}$
(ii) Resistance of 2 m length of the wire $=0.4 \times 2=0.8$ ohm
(iii) When the wire is doubled on itself:
(a) the area of cross-section is doubled. If A is the original C.S. area, now it is 2 A .
(b) The length becomes half i.e.L/2

ACBSE Coaching for OCathematics and Science

Resistance of this wire $=R^{\prime}=p(1 / 2) /(2 A)=1 / 4(p(L / A)$
But $\rho(\mathrm{L} / \mathrm{A})=2$ ohm
$R^{\prime}=1 / 4 \times 2=0.5$ Ohm
5. How much work is done in moving 4 C across two point having pd. 10 v

Solution : W $=\mathrm{VQ}=10 \times 4=40 \mathrm{~J}$
6. How much energy is given to each coulomb of charge passing through a 9 v battery?

Solution: Potential difference $=$ Work done $=$ Potential difference \times charge
Where, Charge $=1 \mathrm{C}$ and Potential difference $=6 \mathrm{~V}$
Work done $=9 \times 1=9$ Joule .
7. 100 j of work is done in moving a charge of 5 C from one terminal of battery to another. What is the potential difference of battery?

Solution: $V=W / Q=100 \mathrm{j} / 5 \mathrm{C}=20 \mathrm{~V}$
8. If $4 \times 10^{-3} \mathrm{~J}$ of work is done in moving a particles carrying a charge of $16 \times 10^{-6} \mathrm{C}$ from infinity to point P.What will be the potential at a point?

Solution: the potential at a point is work done to carry unit from one point to another

$$
=\left(4 \times 10^{-3}\right) /\left(16 \times 10^{-6} \mathrm{C}\right)=250 \mathrm{~V}
$$

9. Calculate the current and resistance of a $100 \mathrm{~W}, 200 \mathrm{~V}$ electric bulb.

Solution: Power, $P=100 \mathrm{~W}$ and Voltage, $V=200 \mathrm{~V}$
Power $\mathrm{P}=\mathrm{VI}$
So, Current I $=P / v=100 / 200=0.5 \mathrm{~A}$
Resistance $\mathrm{R}=\mathrm{V} / \mathrm{I}=200 / 0 \cdot 5=400 \mathrm{~W}$.
10.Calculate the power rating of the heater coil when used on 220 V supply taking 5 Amps.

Solution: Voltage,$V=220 \mathrm{~V}$ and Current,$I=5 \mathrm{~A}$,
Power, $\mathrm{P}=\mathrm{VI}=220 \times 5=1100 \mathrm{~W}=1.1 \mathrm{KW}$.
11.A lamp can work on a 50 volt mains taking 2 amps. What value of the resistance must be connected in series with it so that it can be operated from 200 volt mains giving the same power.

Solution: Lamp voltage, $\mathrm{V}=50 \mathrm{~V}$ and Current, $\mathrm{I}=2 \mathrm{amps}$.
Resistance of the lamp $=\mathrm{V} / \mathrm{I}=50 / 2=25 \Omega$
Resistance connected in series with lamp =r.
Supply voltage $=200$ volt. and Circuit current $\mathrm{I}=2 \mathrm{~A}$
Total resistance Rt= V/I = 200/2 = 100 2

$$
R t=R+r \quad \Rightarrow \quad 100=25+r \quad \Rightarrow r=75 \Omega
$$

ACBSE Coaching for Ohathematics and Science

12. Calculate the work done in moving a charge of 5 coulombs from a point at a potential of 210 volts to another point at 240 volts

Solution: Potential difference $=210-240=30 \mathrm{~V}$
So, $W=V \times Q=30 V \times 5 C=150$ Joules
13. How many electrons pass through a lamp in one minute if the current be 200 mA ?

Solution:
$\mathrm{I}=220 \mathrm{~mA}=0.22 \mathrm{~A}$
$I=Q / t$
$0.22=\mathrm{Q} / 60$
$Q=0.22 \times 60=13.2 C$
No of electron carry 1 C charge $=6 \times 10^{18}$
No of electron carry 13.2 C charge $=6 \times 10^{18} \times 13.2 \mathrm{C}=79.2 \times 10^{18}$
14. Calculate the current supplied by a cell if the amount of charge passing through the cell in 4 seconds is 12 C ?

Solution: We know that $\mathrm{I}=\mathrm{Q} / \mathrm{t} \quad \Rightarrow \quad \mathrm{I}=\mathrm{Q} / \mathrm{t}=12 / 4=3 \mathrm{~A}$
15. A 2 Volt cell is connected to a 1Ω resistor. How many electrons come out of the negative terminal of the cell in 2 minutes?

Solution: $V=I R=>I=V / R=2 / 1=2 \mathrm{~A}$
$I=Q / t=>Q=I t=2 \times 2 \times 20=80 C$
No of electron carry 1 C charge $=6 \times 10^{18}$
No of electron carry 80 C charge $=6 \times 10^{18} \times 80 \mathrm{C}=108 \times 10^{18}=1.08 \times 10^{20}$
16. (a) How much current will an electric bulb draw from a 220 V source, if the resistance of the bulb filament is 1200 Ω ?
(b) How much current will an electric heater coil draw from a 220 V source, if the resistance of the heater coil is 100 Ω ?

Solution (a) We are given $\mathrm{V}=220 \mathrm{~V} ; \mathrm{R}=1200 \Omega$.
we have the current $\mathrm{I}=\mathrm{V} / \mathrm{R}=220 \mathrm{~V} / 1200 \Omega=0.18 \mathrm{~A}$.
(b) We are given, $\mathrm{V}=220 \mathrm{~V}, \mathrm{R}=100 \Omega$.
we have the current $\mathrm{I}=\mathrm{V} / \mathrm{R}=220 \mathrm{~V} / 100 \Omega=2.2 \mathrm{~A}$.
17. The potential difference between the terminals of an electric heater is 60 V when it draws a current of 4 A from the source. What current will the heater draw if the potential difference is increased to 120 V ?

Solution : We are given, potential difference $\mathrm{V}=60 \mathrm{~V}$, current $\mathrm{I}=4 \mathrm{~A}$.

Jentil rlirolimil A CBSE Coaching for SGatiematis and Sclence

According to Ohm's law, $\mathrm{R}=\mathrm{V} / \mathrm{I}=60 / 4=15 \Omega$
When the potential difference is increased to 120 V
the current is given by current $=\mathrm{V} / \mathrm{R}=120 \mathrm{~V} / 15=8 \mathrm{~A}$
The current through the heater becomes 8 A .
18. A 4Ω resistance wire is doubled on it. Calculate the new resistance of the wire.

Solution We are given, $\mathrm{R}=4 \Omega$.
When a wire is doubled on it, its length would become half and area of cross-section would double. T
So, a wire of length I and area of cross-section A becomes of length I/2
And area of cross section $2 A$. we have $R=\rho(I / A)$
$R 1=\rho((I / A) / 2 A) \quad$ where R1 is the new resistance.
Therefore, $\mathrm{R} 1 / \mathrm{R}=\rho((I / A) / 2 A) / \rho(I / A)=1 / 4$
Or, R1 $=\mathrm{R} / 4=4 \Omega / 4=1 \Omega$
The new resistance of the wire is 1Ω.
19. 3.A circuit is made of 0.4Ω wire, a 150Ω bulb and a 120Ω rheostat connected inseries.Determine the total resistance of the resistance of the circuit.

Solution: Resistance of the wire $=0.4 \Omega \quad$ Resistance of bulb $=150 \Omega$ Resistance of rheostat $=120 \Omega$
In series, Total resistance , $R=0.4+150+120=270.4 \Omega$
20. A current of 0.2 Ampere flows through a conductor of resistance 4.5Ω. Calculate the potential difference at the ends of the conductor.

Solution: The potential difference at the ends of the conductor. $=\mathrm{V}=\mathrm{IR}=0.2 \times 4.5=0.9 \mathrm{~V}$
21. A lamp has a resistance of 96 ohms. How much current flows through the lamp when it is connected to 120 volts?

Solution: $\mathrm{I}=\mathrm{V} / \mathrm{R}=120 / 96=1.25 \mathrm{~A}[\mathrm{~V}=\mathrm{IR}]$
The current through the lamp equals 1.25 A.'
22. The manufacturer specifies that a certain lamp will allow 0.8 ampere of current when 120 volts is applied to it.

What is the resistance of the lamp?
Solution: $V=I R$ So, $R=V / I=120 / 0.8=150 \mathrm{~W}$
23. How much voltage is required to cause 1.6 amperes in a device that has 30 ohms of resistance?

Given: $V=I R=1.6 \times 30=48 \mathrm{~V}$
24. How much power is dissipated when 0.2 ampere of current flows through a 100 -ohm resistor?

Ans: $\mathrm{P}=\mathrm{VI}=\mathrm{IR} \times \mathrm{I}=\mathrm{I} 2 \mathrm{R}=0.2 \times 0.2 \times 100=4 \mathrm{~W}$
25. How much energy is converted by a device that draws 1.5 amperes from a 12 -volt battery for 2 hours?

Solution: $\mathrm{W}=\mathrm{Pt}, \mathrm{P}=\mathrm{V}$ I So, $\mathrm{W}=\mathrm{VIt}=12 \times 1.5 \times 2=36 \mathrm{~Wh}$

