COORDINATEGEOMETRY

Section formula

Let $A(x_1, y_1)$ and $B(x_2, y_2)$ be two distinct points such that a point P(x, y) divides *All* internally in the ratio l: m. That is, $\frac{AP}{PR} = \frac{l}{m}$

From the Fig. 5.2, we get

$$AF = CD = OD - OC = x - x_1$$

$$PG = DE = OE - OD = x_2 - x$$
 Also,
$$PF = PD - FD = y - y_1$$

$$BG = BE - GE = y_2 - y$$

Now, $\triangle AFP$ and $\triangle PGB$ are similar. (Refer chapter 6, section 6.3)

Thus,
$$\frac{AF}{PG} = \frac{PF}{BG} = \frac{AP}{PB} = \frac{l}{m}$$

Thus, the point P which divides the line segment joining the two points $A(x_1, y_1)$ and $B(x_2, y_2)$ internally in the ratio l:m is

$$P\Big(\frac{lx_2+mx_1}{l+m}\,,\frac{ly_2+my_1}{l+m}\Big)$$

This formula is known as **section formula**.

It is clear that the section formula can be used only when the related three points are collinear.

Results

- (i) If P divides a line segment AB joining the two points $A(x_1, y_1)$ and $B(x_2, y_2)$ externally in the ratio l: m, then the point P is $\left(\frac{lx_2 mx_1}{l m}, \frac{ly_2 my_1}{l m}\right)$. In this case $\frac{l}{m}$ is negative.
- (ii) Midpoint of AB

If M is the midpoint of AB, then M divides the line segment AB internally in the ratio 1:1. By substituting l = 1 and m = 1 in the section formula, we obtain

the midpoint of AB as
$$M\left(\frac{x_2 + x_1}{2}, \frac{y_2 + y_1}{2}\right)$$

The midpoint of the line segment joining the points $A(x_1, y_1)$ and $B(x_2, y_2)$ is $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$.