Properties Of Arithmetic Mean

1. The sum of the deviations, of all the values of x, from their arithmetic mean, is zero.

Justification : $\sum f_{i}\left(x_{i}-\bar{x}\right)=\sum f_{i} x_{i}-\bar{x} \sum f_{i}=0$
Since $\overline{\mathrm{x}}$ is a constant, $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}} \therefore \sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\overline{\mathrm{x}} \sum \mathrm{f}_{\mathrm{i}}$
2. The product of the arithmetic mean and the number of items gives the total of all items.

Justification : $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}} \Rightarrow \sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\overline{\mathrm{x}} \sum \mathrm{f}_{\mathrm{i}}$

$$
\text { or } \overline{\mathrm{x}}=\frac{\sum \mathrm{x}_{\mathrm{i}}}{\mathrm{~N}} \Rightarrow \overline{\mathrm{x}} \cdot \mathrm{~N}=\sum \mathrm{x}_{\mathrm{i}}
$$

3. If \bar{x}_{1} and \bar{x}_{2} are the arithmetic mean of two samples of sizes n_{1} and n_{2} respectively then, the arithmetic mean \bar{x} of the distribution combining the two can be calculated as
$\overline{\mathrm{x}}=\frac{\mathrm{n}_{1} \overline{\mathrm{x}}_{1}+\mathrm{n}_{2} \overline{\mathrm{x}}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}$
This formula can be extended for still more groups or samples.
$\overline{\mathrm{x}}_{1}=\frac{\sum \mathrm{x}_{1 \mathrm{i}}}{\mathrm{n}_{1}} \Rightarrow \sum \mathrm{x}_{1 \mathrm{i}}=\mathrm{n}_{1} \overline{\mathrm{x}}_{1}$
Justification : $\overline{\mathrm{x}}_{1}=\frac{\sum \mathrm{x}_{1 \mathrm{i}}}{\mathrm{n}_{1}} \Rightarrow \sum \mathrm{x}_{1 \mathrm{i}}=\mathrm{n}_{1} \overline{\mathrm{x}}_{1}=$ total of the observations of the first sample
Similarly $\sum \mathrm{x}_{2 \mathrm{i}}=\mathrm{n}_{2} \overline{\mathrm{x}}_{2}=$ total of the observations of the first sample
The combined mean of the two samples

$$
\begin{gathered}
=\frac{\text { combined total }}{\mathrm{n}_{1}+\mathrm{n}_{2}} \\
\overline{\mathrm{x}}=\frac{\mathrm{n}_{1} \overline{\mathrm{x}}_{1}+\mathrm{n}_{2} \overline{\mathrm{x}}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}
\end{gathered}
$$

