SUMMATIVE ASSESSMENT - I, 2014 MATHEMATICS CLASS - IX

1. $(81)^{-1 / 4} \times \sqrt[4]{81}$ का सरलतम मान है :
(A) 9
(B) 3
(C) 1
(D) 0

The simplified value of $(81)^{-1 / 4} \times \sqrt[4]{81}$ is :
(A) 9
(B) 3
(C) 1
(D) 0
2. $\sqrt{2}$ बहुपद की घात है :
(A) 0
(B) 1
(C) 2
(D) $\sqrt{2}$
$\sqrt{2}$ is the polynomial of degree :
(A) 0
(B) 1
(C) 2
(D) $\sqrt{2}$
3. यदि $\mathrm{p}(x)=3 x^{3}-2 x^{2}-x+4$ हो, तो $\mathrm{p}(-1)$ बराबर है :
(A) $\quad-2$
(B) 4
(C) 0
(D) 6

If $\mathrm{p}(x)=3 x^{3}-2 x^{2}-x+4$ then $\mathrm{p}(-1)$ is equal to :
(A) $\quad-2$
(B) 4
(C) 0
(D) 6
4. $(\sqrt{2}+1 / \sqrt{2})^{2}$ बराबर है :
(A) $4 \sqrt{2}$
(B) $9 / 2$
(C) $4 / \sqrt{2}$
(D) 9 $(\sqrt{2}+1 / \sqrt{2})^{2}$ is equal to :
(A) $4 \sqrt{2}$
(B) $9 / 2$
(C) $4 / \sqrt{2}$
(D) 9
5. यदि $\mathrm{p} \| \mathrm{q}$ है, तो x बराबर है :

(A) 137°
(B) 117°
(C) 43°
(D) 47°

If $\mathrm{p} \| \mathrm{q}$ then x is :

(A) 137°
(B) 117°
(C) 43°
(D) 47°
6. यदि $\triangle X Y Z$, मे $\angle Y>\angle X$ और $X Y=13 \mathrm{~cm}$, तो $X Z$ है :
(A) 8 cm
(B) 9 cm
(C) 13.5 cm
(D) 13 cm

If in a triangle $\mathrm{XYZ}, \angle \mathrm{Y}>\angle \mathrm{X}$ and $\mathrm{XY}=13 \mathrm{~cm}$, then XZ is :
(A) 8 cm
(B) 9 cm
(C) 13.5 cm
(D) 13 cm
7. यदि एक बिंदु y-अक्ष की ॠणात्मक दिशा में मूलबिंदु से 3 इकाई की दूरी पर है, तो बिंदु के निर्देशांक हैं :
(A) $(0,3)$
(B) $(0,-3)$
(C) $(3,0)$
(D) $(-3,0)$

If a point is on negative side of y-axis at a distance of 3 units from origin then, the co-ordinates of the point are :
(A)
$(0,3)$
(B) $(0,-3)$
(C) $(3,0)$
(D) $(-3,0)$
8. एक बिंदु के निर्देशांक $(-2,3)$ हैं, तो इसकी x-अक्ष से दूरी है :
(A) 2 इकाई
(B) -3 इकाई
(C) -2 इकाई
(D) 3 इकाई

Co-ordinate of a point are $(-2,3)$. Its distance from x-axis is :
(A) 2 units
(B) -3 units
(C) - 2 units
(D) 3 units

खण्ड-ब/SECTION-B

प्रश्न संख्या 9 से 14 तक प्रत्येक के 2 अंक हैं।

Question numbers 9 to 14 carry 2 marks each.
9. सरलतम रूप में लिखिए
$8 \sqrt{45}+2 \sqrt{50}-3 \sqrt{147}$
Write in simplest form :

$$
8 \sqrt{45}+2 \sqrt{50}-3 \sqrt{147}
$$

10. k का ऐसा मान ज्ञात कीजिए कि $(x-1) 5 x^{3}+4 x^{2}-6 x+2 \mathrm{k}$ का एक गुणनखण्ड हो जाए।

Find the value of k , such that $x-1$ is a factor of $5 x^{3}+4 x^{2}-6 x+2 \mathrm{k}$
11. गुणनखण्ड कीजिए $x^{4}-125 x y^{3}$

Factorise $x^{4}-125 x y^{3}$
12. चित्र में एक रेखा पर तीन बिंदु A, B और C इस प्रकार हैं कि B की स्थिति A व C के बीच में है। सिद्ध कीजिए कि $A B+B C=A C$ है।

In the figure, if A, B and C are three points on a line and B lies between A and C, then prove that $A B+B C=A C$.

13. चित्र में $\angle \mathrm{AOC}$ और $\angle \mathrm{BOC}$ एक सरल रेखा AB बनाते हैं। यदि $\mathrm{a}-\mathrm{b}=80^{\circ}$ हो, तो a और b का मान ज्ञात कीजिए।

In the given figure $\angle A O C$ and $\angle B O C$ form a line $A B$. If $a-b=80^{\circ}$, find the values of a and b .

अथवा / OR

चित्र में AB, CD और EF तीन रेखाएँ बिंदु O पर संगामी हैं। x का मान ज्ञात कीजिए।

In the given figure, $A B, C D$ and $E F$ are three lines concurrent at O. Find the value of x.

14. एक त्रिभुज का परिमाप 120 cm और भुजाएँ $5: 12: 13$ के अनुपात में हैं। त्रिभुज का क्षेत्रफल ज्ञात कीजिए।
The perimeter of a Δ is 120 cm and its sides are in the ratio $5: 12: 13$. Find the area of the triangle.

खण्ड-स / SECTION-C

प्रश्न संख्या 15 से 24 तक प्रत्येक प्रश्न के 3 अंक हैं।
Question numbers 15 to 24 carry 3 marks each.
15.

सरत कीजिए $\left[5^{2}\left(8^{1 / 3}+27^{1 / 3}\right)^{3}\right]^{1 / 5}$
Simplify : $\left[5^{2}\left(8^{1 / 3}+27^{1 / 3}\right)^{3}\right]^{1 / 5}$

अथवा / OR

$0 . \overline{235}$ को p / q के रूप में व्यक्त कीजिए, जबकि p और q पूर्णांक है, $\mathrm{q} \neq 0$ है।
Express $0 . \overline{235}$ in the form p / q where p and q are integers, $\mathrm{q} \neq 0$.
a और b का मान ज्ञात कीजिए, जबकि
16.

$$
\frac{\sqrt{2}+\sqrt{3}}{3 \sqrt{2}-2 \sqrt{3}}=a+b \sqrt{6} .
$$

Find the value of a and b, if

$$
\frac{\sqrt{2}+\sqrt{3}}{3 \sqrt{2}-2 \sqrt{3}}=a+b \sqrt{6} .
$$

17. यदि $4 x^{3}-16 x^{2}+10 x+\mathrm{k}$ का गुणनखण्ड $2 x-1$ है, तो k का मान ज्ञात कीजिए। If $2 x-1$ is a factor of $4 x^{3}-16 x^{2}+10 x+\mathrm{k}$ then find the value of k .

अथवा / OR
यदि $x=2 y+6$ हो, तो $x^{3}-8 y^{3}-36 x y-216$ का मान ज्ञात कीजिए।
If $x=2 y+6$, find the value of $x^{3}-8 y^{3}-36 x y-216$.
18. यदि $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=280$ और $\mathrm{ab}+\mathrm{bc}+\mathrm{ca}=9 / 2$ है, तो $(\mathrm{a}+\mathrm{b}+\mathrm{c})^{3}$ का मान ज्ञात कीजिए। If $a^{2}+b^{2}+c^{2}=280$, and $a b+b c+c a=9 / 2$, then find the value of $(a+b+c)^{3}$.
19. यदि p और q समांतर रेखाएँ हैं, तो y का मान ज्ञात कीजिए।

What is the value of y, if p and q are parallel to each other.

अथवा / OR

चित्र में $\angle \mathrm{PQR}=\angle \mathrm{PRQ}$ है, तो सिद्ध कीजिए कि $\angle \mathrm{PQS}=\angle \mathrm{PRT}$ है। $\angle \mathrm{P}$ का माप ज्ञात कीजिए जबकि $\angle \mathrm{PQR}=70^{\circ}$ हैं।

In the given figure, $\angle \mathrm{PQR}=\angle \mathrm{PRQ}$, then prove that $\angle \mathrm{PQS}=\angle \mathrm{PRT}$. Also find $\angle \mathrm{P}$ if $\angle \mathrm{PQR}=70^{\circ}$.

20. त्रिभुज PQR की भुजा QR पर कोई बिंदु S है। सिद्ध कीजिए कि $\mathrm{PQ}+\mathrm{QR}+\mathrm{RP}>2 \mathrm{PS}$ है।

S is any point on the side $Q R$ of a triangle $P Q R$. Prove that $P Q+Q R+R P>2 P S$.

21. चित्र में $\mathrm{AB}=\mathrm{CD}, \angle \mathrm{ABD}=\angle \mathrm{CDB}$ है। सिद्ध कीजिए कि $\mathrm{AD}=\mathrm{CB}$ है।

In the given figure $\mathrm{AB}=\mathrm{CD}, \angle \mathrm{ABD}=\angle \mathrm{CDB}$. Prove that $\mathrm{AD}=\mathrm{CB}$.

22. आयत ABCD में बिंदु E , भुजा BC को समद्विभाजित करता है। सिद्ध कीजिए कि $\mathrm{AE}=\mathrm{ED}$ है।

In a rectangle $A B C D, E$ is a point which bisects $B C$. Prove that $A E=E D$.

23. "यदि त्रिभुज की एक भुजा को बढ़ाया जाए, तो इस प्रकार बना बाह्य कोण अपने दोनों अंतः अभिमुख कोणों के योग के बराबर होता है"। सिद्ध कीजिए।
"If a side of a triangle is produced, then the exterior angle so formed is equal to the sum of interior opposite angles". Prove it.
24. चतुर्भुज ABCD का क्षेत्रफल ज्ञात कीजिए जबकि $\mathrm{AB}=7 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}, \mathrm{CD}=12 \mathrm{~cm}, \mathrm{DA}=15$ cm और $\mathrm{AC}=9 \mathrm{~cm}$ है।
Find the area of the quadrilateral, ABCD where $\mathrm{AB}=7 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}, C D=12 \mathrm{~cm}$, $D A=15 \mathrm{~cm}$ and $\mathrm{AC}=9 \mathrm{~cm}$.

Isuril
 ACBSE Coaching for 9(athematics and Science

खण्ड-द/ SECTION-D
प्रश्न संख्या 25 से 34 तक प्रत्येक प्रश्न के 4 अंक हैं।
Question numbers 25 to 34 carry 4 marks each.
25.

यदि $\mathrm{p}=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ और $\mathrm{q}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$, तो $\mathrm{p}^{2}+\mathrm{q}^{2}$ ज्ञात कीजिए।
If $\mathrm{p}=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ and $\mathrm{q}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$, find $\mathrm{p}^{2}+\mathrm{q}^{2}$.
अथवा/ OR
दर्शाइए कि $\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}=5$.
Show that $\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}=5$.
26. सरल कीजिए $\frac{4 \sqrt{3}}{2-\sqrt{2}}-\frac{30}{4 \sqrt{3}-3 \sqrt{2}}-\frac{3 \sqrt{2}}{3+2 \sqrt{3}}$

Simplify $\frac{4 \sqrt{3}}{2-\sqrt{2}}-\frac{30}{4 \sqrt{3}-3 \sqrt{2}}-\frac{3 \sqrt{2}}{3+2 \sqrt{3}}$
27. गुणनखण्ड कीजिए $2 x^{3}-x^{2}-13 x-6$.

Factorise $2 x^{3}-x^{2}-13 x-6$.
28. बहुपद $\mathrm{p}(x)=2 x^{3}-3 x^{2}+\mathrm{a} x-3 \mathrm{a}+9$ को $x+1$ से भाग देने पर शेषफल 16 हो, तो a का मान ज्ञात कीजिए। यदि $\mathrm{p}(x)$ को $x+2$ से भाग दिया जाए, तो शेषफल क्या होगा ?

The polynomial $\mathrm{p}(x)=2 x^{3}-3 x^{2}+\mathrm{a} x-3 \mathrm{a}+9$ when divided by $x+1$, leaves the remainder 16. Find the value of a. Also find the remainder when $\mathrm{p}(x)$ is divided by $x+2$.
29. जाँच कीजिए कि $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$ है। अब $216 x^{3}-125 y^{3}$ के गुणनखण्ड कीजिए। Verify $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$. Hence factorise $216 x^{3}-125 y^{3}$.
30. एक आयत ABCD के तीन शीर्ष $\mathrm{A}(1,3), \mathrm{B}(1,-1)$ और $\mathrm{C}(-1,-1)$ हैं। इन्हें ग्राफ पेपर पर आलेखित कीजिए और इसके चौथे शीर्ष D के निर्देशांक ज्ञात कीजिए। आयत का क्षेत्रफल भी ज्ञात कीजिए।

Three vertices of a rectangle ABCD are $\mathrm{A}(1,3), \mathrm{B}(1,-1)$ and $\mathrm{C}(-1,-1)$. Plot these points on a graph paper and hence use it to find the coordinates of the $4^{\text {th }}$ vertex D . Also find the area of the rectangle.
31. चित्र में यदि $\mathrm{AB} \| \mathrm{CD}$ है, तो x और y ज्ञात कीजिए।

In the given figure, find the value of x and y if $A B \| C D$.

32. $\triangle \mathrm{ABC}$ और $\triangle \mathrm{PQR}$ में $\mathrm{AB}=\mathrm{PQ}, \mathrm{AC}=\mathrm{PR}$ और शीर्ष लम्ब AM व PN समान हैं। दर्शाइए कि $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$ है।
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}, \mathrm{AB}=\mathrm{PQ}, \mathrm{AC}=\mathrm{PR}$ and altitude AM and PN are equal. Show that $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$.

अथवा / OR

सिद्ध कीजिए कि दो त्रिभुज सर्वांगसम होते है, यदि एक त्रिभुज के दो कोण और उनकी अंतर्गत भुजा, दूसरे त्रिभुज के दो कोणों और उनकी अंतर्गत भुजा के बराबर होती है।
Prove that two triangles are congruent, if any two angles and the included side of one triangle are equal to two angle and the included side of other triangle.
33. चित्र में $\angle \mathrm{BCD}=\angle \mathrm{ADC}$ और $\angle \mathrm{ACB}=\angle \mathrm{BDA}$ है। दर्शाइए कि (i) $\mathrm{AD}=\mathrm{BC}$, (ii) $\angle \mathrm{A}=\angle \mathrm{B}$ है।

In the given figure, $\angle \mathrm{BCD}=\angle \mathrm{ADC}$ and $\angle \mathrm{ACB}=\angle \mathrm{BDA}$. Prove that (i) $\mathrm{AD}=\mathrm{BC}$, (ii) $\angle \mathrm{A}=\angle \mathrm{B}$.

34. चित्र में $\mathrm{RP}=\mathrm{RQ}$ और $\triangle \mathrm{PQR}$ की भुजाओं QR, PR पर क्रमशः M और N इस प्रकार हैं कि $\mathrm{QM}=\mathrm{PN}$ है। सिद्ध कीजिए कि $\mathrm{OP}=\mathrm{OQ}$ है, जबकि बिंदु O, PM और QN का प्रतिच्छेदन बिंदु है।

In the given figure, $\mathrm{RP}=\mathrm{RQ}$ and M and N are respectively points on sides QR and PR of $\triangle P Q R$, such that $Q M=P N$. Prove that $O P=O Q$ where O is the point of intersection of PM and QN.

