JSMIIL HTHOBI:L ACBSE Coaching for Onfathematics and Science

 SUMMATIVE ASSESSMENT - I, 2014

 SUMMATIVE ASSESSMENT - I, 2014 MATHEMATICS CLASS - IX

 MATHEMATICS CLASS - IX}

1. $(a+\sqrt{b})(a-\sqrt{b})$ बराबर है :
(A) $b^{2}-a^{2}$
(B) $a^{2}-b^{2}$
(C) $\mathrm{a}^{2}-\mathrm{b}$
(D) $\quad b^{2}-a$
$(a+\sqrt{b})(a-\sqrt{b})$ is equal to :
(A) $\mathrm{b}^{2}-\mathrm{a}^{2}$
(B) $a^{2}-b^{2}$
(C) $a^{2}-b$
(D) $\mathrm{b}^{2}-\mathrm{a}$
2. बहुपद $\mathrm{p}(y)=\mathrm{m} y^{\mathrm{a}}$ में शून्यकों की अधिकतम संख्या है :
(A) $a+1$
(B) m
(C) $m+1$
(D) a

The maximum number of zeroes of the polynomial $\mathrm{p}(y)=\mathrm{m} y^{\mathrm{a}}$ is :
(A) $a+1$
(B) m
(C) $\mathrm{m}+1$
(D) a
3. $\mathrm{m}^{3}\left(1-\frac{x}{\mathrm{~m}}\right)^{3}$ के प्रसारित रूप में x^{3} का गुणांक है :
(A) m^{3}
(B) $\frac{1}{\mathrm{~m}^{3}}$
(C) -1
(D) 1

The coefficient of x^{3} in the expansion of $\mathrm{m}^{3}\left(1-\frac{x}{\mathrm{~m}}\right)^{3}$ is :
(A) m^{3}
(B) $\frac{1}{\mathrm{~m}^{3}}$
(C) -1
(D) 1
4. यदि बहुपद $x^{3}+\mathrm{a} x^{2}+x+3$ का एक गुणनखण्ड $(x+3)$ हो, तो a का मान है :
(A) 3
(B) 4
(C) 0
(D) -3

If $(x+3)$ is the factor of polynomial $x^{3}+\mathrm{a} x^{2}+x+3$ then, the value of a is :
(A) 3
(B) 4
(C) 0
(D) $\quad-3$
5. दी गई आकृति में $\mathrm{BC}\left|\mid \mathrm{DE}, \angle \mathrm{ABC}=\angle \mathrm{CDE}=90^{\circ}\right.$ और $\angle \mathrm{ACB}=30^{\circ}$ हो, तो $\angle \mathrm{DCE}$ का माप होगा :

(A) 30°
(B) 60°
(C) 90°
(D) 120°

In fig. $B C\left|\mid D E\right.$. If $\angle A B C=\angle C D E=90^{\circ}$ and $\angle A C B=30^{\circ}$ then the measure of $\angle \mathrm{DCE}$ is :

Jsurll Tomalal ACBSE Coaching for O(athematics and Science

(A) 30°
(B) $\quad 60^{\circ}$
(C) 90°
(D) 120°
6. $\triangle \mathrm{ABC}$ में यदि $\angle \mathrm{A}>\angle \mathrm{B}>\angle \mathrm{C}$ हो, तो :
(A) $\mathrm{AB}>\mathrm{AC}$
(B) $\mathrm{AC}<\mathrm{BC}$
(C) $\mathrm{AB}>\mathrm{BC}$
(D) $\mathrm{AC}>\mathrm{BC}$

In $\triangle \mathrm{ABC}$, if $\angle \mathrm{A}>\angle \mathrm{B}>\angle \mathrm{C}$ then:
(A) $\mathrm{AB}>\mathrm{AC}$
(B) $\mathrm{AC}<\mathrm{BC}$
(C) $\mathrm{AB}>\mathrm{BC}$
(D) $\mathrm{AC}>\mathrm{BC}$
7. यदि बिंदु $\mathrm{A}(0,2), \mathrm{B}(0,-6)$ और $\mathrm{C}(\mathrm{a}, 3) y$-अक्ष पर स्थित हो, तो a का मान है :
(A) 0
(B) 2
(C) 3
(D) -6

If the points $A(0,2), B(0,-6)$ and $C(a, 3)$ lie on y-axis, then the value of a is :
(A) 0
(B) 2
(C) 3
(D) $\quad-6$
8. बिंदु $P(3,-5)$ चतुर्थांश में स्थित है :
(A) I
(B) II
(C) III
(D) IV

The point $\mathrm{P}(3,-5)$ lies in the quadrant:
(A) I
(B) II
(C) III
(D) IV

खण्ड-ब/ SECTION-B
प्रश्न संख्या 9 से 14 में प्रत्येक के 2 अंक हैं।
Question number $\mathbf{9}$ to $\mathbf{1 4}$ carry two marks each.
9. सरल कीजिए : $3 \sqrt[3]{40}-4 \sqrt[3]{320}-\sqrt[3]{5}$.

Simplify : $3 \sqrt[3]{40}-4 \sqrt[3]{320}-\sqrt[3]{5}$.
10. बहुपद $\mathrm{p}(y)=y^{4}-3 y^{2}+7 y-10$ को $(y-2)$ से भाग देने पर शेषफल ज्ञात कीजिए।

Find the remainder when the polynomial $\mathrm{p}(y)=y^{4}-3 y^{2}+7 y-10$ is divided by $(y-2)$.
11. गुणनखण्ड कीजिए : $\mathrm{a}(\mathrm{a}+\mathrm{b})^{2}-2 \mathrm{ab}(\mathrm{a}+\mathrm{b})$

Factorize : $a(a+b)^{2}-2 a b(a+b)$

Jsull Tumain: ACBSE Coaching for OLGthematics and Science

12. यदि कोई बिंदु C , दो बिंदुओं A और B के बीच में इस प्रकार स्थित है कि $\mathrm{AC}=\mathrm{BC}$ हो, तो सिद्ध कीजिए कि $\mathrm{AC}=\frac{1}{2} \mathrm{AB}$ है।
If a point C lies between two points A and B such that $A C=B C$, then prove that $\mathrm{AC}=\frac{1}{2} \mathrm{AB}$.
13. दी गई आकृति में $\angle \mathrm{DOB}=87^{\circ}$ और $\angle \mathrm{COA}=82^{\circ}$ है। यदि $\angle \mathrm{BOA}=35^{\circ}$ हो, तो $\angle \mathrm{COB}$ और $\angle \mathrm{COD}$ ज्ञात कीजिए।

In figure $\angle \mathrm{DOB}=87^{\circ}$ and $\angle \mathrm{COA}=82^{\circ}$. If $\angle \mathrm{BOA}=35^{\circ}$ then find $\angle \mathrm{COB}$ and $\angle C O D$.

अथवा/ OR
दी गई आकृति में $\angle \mathrm{APQ}$ का समद्विभाजक PR है। सिद्ध कीजिए कि $\mathrm{AB} \| \mathrm{CD}$ है।

In the figure PR is the angle bisector of $\angle \mathrm{APQ}$. Prove that $\mathrm{AB} \| \mathrm{CD}$.

14. उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसकी भुजाएँ $16 \mathrm{~cm}, 14 \mathrm{~cm}$ और 10 cm हैं।

Find the area of a triangle whose sides are $16 \mathrm{~cm}, 14 \mathrm{~cm}$ and 10 cm .

JSUINI HITOTI:
 ACBSE Coaching for OCathematics and Science
 खण्ड-स/ SECTION-C

प्रश्न संख्या 15 से 24 में प्रत्येक के 3 अंक हैं।

Question numbers 15 to 24 carry three marks each.

15. हल कीजिए : $0 . \overline{6}+0.4 \overline{7}$

Solve : $0 . \overline{6}+0.4 \overline{7}$

अथवा/ OR

$\sqrt{2}$ का ज्यामितीय निरूपण कीजिए।
Represent $\sqrt{2}$ on the number line.
16. यदि $\left(\frac{\mathrm{a}}{\mathrm{b}}\right)^{x-1}=\left(\frac{\mathrm{b}}{\mathrm{a}}\right)^{2 x-8}$ हो, तो x का मान ज्ञात कीजिए।

If $\left(\frac{\mathrm{a}}{\mathrm{b}}\right)^{x-1}=\left(\frac{\mathrm{b}}{\mathrm{a}}\right)^{2 x-8}$ then find the value of x.
17. शेषफल प्रमेय के प्रयोग से गुणनखण्ड कीजिए। $6 x^{3}-25 x^{2}+32 x-12$.

Using remainder theorem, factorize : $6 x^{3}-25 x^{2}+32 x-12$.
अथवा/ OR
उपयुक्त सर्वसमिका के प्रयोग से मान ज्ञात कीजिए : $\frac{87^{3}+13^{3}}{87^{2}-87 \times 13+13^{2}}$.
Using suitable identity find the value of : $\frac{87^{3}+13^{3}}{87^{2}-87 \times 13+13^{2}}$.
18. यदि $x^{3}-5 x^{2}-\mathrm{p} x+24=(x-4) \cdot \mathrm{q}(x)$ हो, तो p का मान क्या है ?

If $x^{3}-5 x^{2}-\mathrm{p} x+24=(x-4) \cdot \mathrm{q}(x)$, then what is the value of p ?
19. दी गई आकृति में $\angle \mathrm{CAB}: \angle \mathrm{BAD}=1: 2$ हो तो, $\triangle \mathrm{ABC}$ के सभी अंतःकोण ज्ञात कीजिए।

In the given figure $\angle \mathrm{CAB}: \angle \mathrm{BAD}=1: 2$, find all the internal angles of $\triangle \mathrm{ABC}$.

अथवा/ OR
सिद्ध कीजिए कि त्रिभुज के सभी कोणों का योग 180° होता है।
Prove that sum of angles of a triangle is 180°.

JSUNIL TITITI: $A C B S E$ Coacting for Mratinematios and Sclence

20. रेखा l कोण A को समद्विभाजित करती है और रेखा l पर कोई बिंदु B है। BP और BQ कोण A की भुजाओं पर B से डाले गए लंब हैं। दर्शाइए कि :
(i) $\Delta \mathrm{APB} \cong \triangle \mathrm{AQB}$
(ii) $\mathrm{BP}=\mathrm{BQ}$

Line l bisects $\angle \mathrm{A}$ and B is any point on line l. BP and BQ are perpendiculars drawn from B on arms of $\angle A$. Prove that:
(i) $\Delta \mathrm{APB} \cong \triangle \mathrm{AQB}$
(ii) $\mathrm{BP}=\mathrm{BQ}$

21. एक समद्विबाहु त्रिभुज ABC में $\mathrm{AC}=\mathrm{BC}$ है तथा AD और BE शीर्षलंब हैं। सिद्ध कीजिए कि $\mathrm{AE}=\mathrm{BD}$ है।
AD and BE are the altitudes of an isosceles triangle ABC with $\mathrm{AC}=\mathrm{BC}$. Prove that $\mathrm{AE}=\mathrm{BD}$.
22. दी गई आकृति में BC पर कोई बिंदु D है। सिद्ध कीजिए कि $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}>2 \mathrm{AD}$ है।

In figure D is a point on $B C$. Prove that $A B+B C+C A>2 A D$.

23. दी गई आकृति में $l \| \mathrm{m}$ और $\mathrm{p} \| \mathrm{q}$ है। x तथा y का मान ज्ञात कीजिए।

In the figure, find x and y if $l\|\mathrm{~m}, \mathrm{p}\| \mathrm{q}$.

24. एक त्रिभुज और समांतर चतुर्भुज का आधार और क्षेत्रफल समान है। यदि त्रिभुज की भुजाएँ 15 cm , 14 cm और 13 cm हों, तो समातंर चतुर्भुज की उँचाई ज्ञात कीजिए जबकि उसका आधार 14 cm है। A triangle and parallelogram have the same base and same area. If the sides of the triangle are $15 \mathrm{~cm}, 14 \mathrm{~cm}$ and 13 cm and the parallelogram stands on the base 14 cm , find the height of parallelogram.

खण्ड-द/ SECTION-D

प्रश्न संख्या 25 से 34 में प्रत्येक के 4 अंक हैं।

Question numbers 25 to 34 carry four marks each.
25.

हल कीजिए : $\frac{7 \sqrt{3}}{\sqrt{10}+\sqrt{3}}-\frac{3 \sqrt{2}}{\sqrt{15}+3 \sqrt{2}}-\frac{2 \sqrt{5}}{\sqrt{6}+\sqrt{5}}$
Evaluate : $\frac{7 \sqrt{3}}{\sqrt{10}+\sqrt{3}}-\frac{3 \sqrt{2}}{\sqrt{15}+3 \sqrt{2}}-\frac{2 \sqrt{5}}{\sqrt{6}+\sqrt{5}}$
अथवा/ OR

यदि $x^{\mathrm{a}}=y, y^{\mathrm{b}}=z$ और $z^{\mathrm{C}}=x$ हो, तो सिद्ध कीजिए कि $\mathrm{abc}=1$ है।
If $x^{\mathrm{a}}=y, y^{\mathrm{b}}=z$ and $z^{\mathrm{c}}=x$ then prove that $\mathrm{abc}=1$.
26.

हल कीजिए : $\frac{\left(\frac{9}{4}\right)^{-3 / 2} \times\left(\frac{125}{27}\right)^{-2 / 3} \times\left(\frac{3}{5}\right)^{-2}}{(\sqrt{2})^{4}}$
Evaluate : $\frac{\left(\frac{9}{4}\right)^{-3 / 2} \times\left(\frac{125}{27}\right)^{-2 / 3} \times\left(\frac{3}{5}\right)^{-2}}{(\sqrt{2})^{4}}$
27. यदि बहुपद $x^{4}-\mathrm{a} x^{3}+\mathrm{b}$, का गुणनखण्ड $x^{2}-3 x+2$ हो, तो a और b के मान ज्ञात कीजिए।

If $x^{2}-3 x+2$ is a factor of polynomial $x^{4}-\mathrm{a} x^{3}+\mathrm{b}$, then find the values of a and b .
28. यदि $x^{2}+\frac{1}{x^{2}}=23$ हो, तो $x^{3}+\frac{1}{x^{3}}$ का मान ज्ञात कीजिए।

If $x^{2}+\frac{1}{x^{2}}=23$, then find the value of $x^{3}+\frac{1}{x^{3}}$.
29. यदि a, b, c वास्तविक संख्याएँ हैं, तथा $a^{2}+b^{2}+c^{2}-a b-b c-c a=0$ है, तो दर्शाइए कि
$\mathrm{a}=\mathrm{b}=\mathrm{c}$ है।
If a, b, c are real numbers and $a^{2}+b^{2}+c^{2}-a b-b c-c a=0$ then show that $\mathrm{a}=\mathrm{b}=\mathrm{c}$.
30. ग्राफ पर निम्नलिखित बिंदुओं को आलेखित कीजिए।

Point	A	B	C	D	E	F
x	1	0	-2	-3	-3	5
y	-7	-5	0	-4	2	3

उन बिंदुओं को लिखिए, जो x - अक्ष और y - अक्ष पर स्थित है।
Plot the following points on the Graph :

Point	A	B	C	D	E	F
x	1	0	-2	-3	-3	5
y	-7	-5	0	-4	2	3

Write the points which lies on x-axis and y-axis.
31. $\triangle \mathrm{ABC}$ में $\angle \mathrm{B}$ और $\angle \mathrm{C}$ के आंतरिक समद्विभाजक BD और CD हैं। दर्शाइए कि $180^{\circ}+y=2 x$ है।

In $\triangle \mathrm{ABC}, \mathrm{BD}$ and CD are internal bisector of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ respectively. Prove that $180^{\circ}+y=2 x$.

32. $\triangle \mathrm{ABC}$ में $\angle \mathrm{A}$ का समद्विभाजक AD है और BC का मध्य बिंदु D है। सिद्ध कीजिए कि $\triangle \mathrm{ABC}$ एक समद्विबाहु त्रिभुज है।
In $\triangle A B C, A D$ is the bisector of $\angle A$ and D is the mid point of $B C$. Prove that $\triangle A B C$ is an isosceles triangle.

अथवा/ OR
ABCD एक चतुर्भुज है जिसके विकर्ण AC और BD परस्पर O पर प्रतिच्छेद करते हैं। दर्शाइए कि $\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}>\mathrm{AC}+\mathrm{BD}$ है।
$A B C D$ is a quadrilateral in which diagonals $A C$ and $B D$ intersect at O. Show that $A B+B C+C D+D A>A C+B D$.
33. दी गई आकृति में $\mathrm{AB}=\mathrm{AD}, \angle 1=\angle 2$ और $\angle 3=\angle 4$ है। सिद्ध कीजिए कि $\mathrm{AP}=\mathrm{AQ}$ है।

In figure $\mathrm{AB}=\mathrm{AD}, \angle 1=\angle 2$ and $\angle 3=\angle 4$. Prove that $\mathrm{AP}=\mathrm{AQ}$.

34. सिद्ध कीजिए कि दो त्रिभुज सर्वांगसम होते हैं, यदि एक त्रिभुज के दो कोण और उनकी अंतर्गत भुजा दूसरे त्रिभुज के दो कोणों और उनकी अंतर्गत भुजा के बराबर हों।
Prove that two triangles are congruent if any two angles and the included side of one triangle is equal to any two angles and the included side of the other triangle.

