SUMMATIVE ASSESSMENT – I, 2014 MATHEMATICS CLASS - IX

BSE Coaching for Mathematics and Science

SECTION - A

1.	यदि b > 0 और b ² = a हो, तो \sqrt{a} बराबर है :								1
	(A)	-b	(B)	b	(C)	\sqrt{b}	(D)	b ²	
	If $b > 0$	If $b > 0$ and $b^2 = a$ then \sqrt{a} is equal to :							
	(A)	-b	(B)	b	(C)	√b	(D)	b^2	
2.	यदि $\frac{x}{y} + \frac{y}{x} = -1$, $(x \neq y, y \neq 0)$ हो, तो $x^3 - y^3$ का मान है :								1
	(A)	-1	(B)	1	(C)	0	(D)	$\frac{1}{2}$	
	If $\frac{x}{y} + \frac{y}{x} = -1$, $(x \neq y, y \neq 0)$ then the value of $x^3 - y^3$ is :								
	(A)	-1	(B)	1	(C)	0	(D)	$\frac{1}{2}$	
3.	यदि $p(t) = 4t^3 + 4t^2 - t - 1$ का गुणनखण्ड (2t + 1) हो, तो $p\left(-\frac{1}{2}\right)$ का मान है :								1
	(A)	$-\frac{1}{2}$	(B)	$\frac{1}{2}$	(C)	1	(D)	0	
	If $(2t+1)$ is the factor of the polynomial $p(t) = 4t^3 + 4t^2 - t - 1$ then the value of $p\left(-\frac{1}{2}\right)$ is :								
	(A)	$-\frac{1}{2}$	(B)	$\frac{1}{2}$	(C)	1	(D)	0	
4.	बहुपद $p(x) = \sqrt{3}$ की घात है :								1
	(A)	3	(B)	√ <u>3</u>	(C)	1	(D)	0	
	The de	egree of the pol	ynomia	al p(x) = $\sqrt{3}$ is:	(C)	1		0	
F	(A) ची गर्च २		(D)	V 3	(C)	1	(D)	0	1
5.	५। ग२ उ		બરાબર રુ	:					I
	B		-C	ς.					

Page - 2

Question numbers 9 to 14 carry two marks each.

9.
$$\sqrt{2} = 1.414$$
 और $\pi = 3.141$ हो, तो दशमलव के तीन स्थान तक $\frac{1}{\sqrt{2}} + \pi$ का मान ज्ञात कीजिए।
Taking $\sqrt{2} = 1.414$ and $\pi = 3.141$, evaluate $\frac{1}{\sqrt{2}} + \pi$ upto three places of decimal.

BSE Coaching for Mathematics and S

10.जाँच कोजिए कि क्या
$$3x^2 + x - 1$$
 का एक गुणनखण्ड $(x+1)$ है?2Examine whether $(x+1)$ is a factor of $3x^2 + x - 1$?

11. यदि x और y, दो घनात्मक वास्तविक संख्याएँ इस प्रकार हैं कि $x^2 + 4y^2 = 17$ और xy = 2 हो, तो **2** (x + 2y) का मान ज्ञात कीजिए।

If *x* and *y* are two positive real numbers such that $x^2 + 4y^2 = 17$ and xy = 2, then find the value of (x + 2y).

12. दो प्रतिच्छेदी वृत्तों के केन्द्र बिंदु P और Q हैं। सिद्ध कीजिए कि PQ=QR=PR है।

P and Q are the centres of two intersecting circles. Prove that PQ = QR = PR.

13. चित्र में ∠AOB : ∠BOC = 2 : 3 है। यदि ∠AOC = 75° हो, तो ∠AOB और ∠BOC का माप **2** ज्ञात कीजिए।

In figure $\angle AOB : \angle BOC = 2 : 3$. If $\angle AOC = 75^{\circ}$ then find the measure of $\angle AOB$ and $\angle BOC$.

2

ACBSE Coaching for Mathematics and Science

अथवा/OR

चित्र में सिद्ध कीजिए कि ∠AOB + ∠BOC + ∠COD + ∠DOA = 360°

In figure, prove that $\angle AOB + \angle BOC + \angle COD + \angle DOA = 360^{\circ}$

14. एक त्रिभुज को भुजाएँ x, x+1 और 2x-1 हैं तथा क्षेत्रफल $x\sqrt{10}$ है। x का मान ज्ञात कीजिए। The sides of a triangle are x, x+1, 2x-1 and its area is $x\sqrt{10}$. What is the value of x?

खण्ड-स/SECTION-C प्रश्न संख्या 15 से 24 में प्रत्येक के 3 अंक हैं। Question numbers 15 to 24 carry three marks each.

15. $1\frac{1}{7}$ का दशमलव रूप ज्ञात कीजिए।

16.

Find the decimal expansion of $1\frac{1}{7}$.

अथवा/OR

सरल कोजिए : $4\sqrt{20} + \frac{1}{2}\sqrt{245} - \sqrt{405}$ Simplify : $4\sqrt{20} + \frac{1}{2}\sqrt{245} - \sqrt{405}$ हल कोजिए : $(\sqrt{5} + 2\sqrt{2})^2 - (\sqrt{5} - \sqrt{8})^2$

http://jsuniltutorial.weebly.com/

2

3

3

Page - 4

Evaluate : $(\sqrt{5} + 2\sqrt{2})^2 - (\sqrt{5} - \sqrt{8})^2$

17. यदि $3x^2 - mx - na$ का एक गुणनखण्ड x - a हो, तो सिद्ध कीजिए कि $a = \frac{m+n}{3}$ है।

ACBSE Coaching for Mathematics and

If *x* – a is the factor of $3x^2 - mx - na$ then prove that $a = \frac{m+n}{3}$.

अथवा/OR

शेषफल प्रमेय के प्रयोग से गुणनखण्ड कीजिए : $2x^3 - 9x^2 - 11x + 30$. Factorise using the remainder theorem $2x^3 - 9x^2 - 11x + 30$.

- 18. गुणनखण्ड कोजिए : $(2y + x)^2(y 2x) + (2x + y)^2(2x y)$ Factorise : $(2y + x)^2(y - 2x) + (2x + y)^2(2x - y)$
- 19. दी गई आकृति में a + b ज्ञात कीजिए।

In the given figure, find a + b.

अथवा/OR

सिद्ध कीजिए कि त्रिभुज के कोणों का योग 180° होता है।

Prove that the sum of the angles of a triangle is 180°.

20. एक सड़क के दोनों ओर बराबर ऊँचाई के दो स्तम्भ AB और CD खड़े हैं (आकृति देखिए)।

यदि AF = CE हो, तो सिद्ध कोजिए कि BE = FD है। Two equal pillars AB and CD are standing on either side of the road as shown in the figure.

http://jsuniltutorial.weebly.com/

Page - 5

3

3

3

3

- 21. ΔABC एक समद्विबाहु त्रिभुज है जिसमें AB = BC है। यदि CE और BF दो माध्यिकाएँ हैं, तो सिद्ध 3 कीजिए कि $\Delta ABF \cong \Delta ACE$ है। ΔABC is an isosceles triangle with AB = BC. If CE and BF are the medians then prove that $\Delta ABF \cong \Delta ACE$.
- 22. सिद्ध कीजिए कि किसी $\triangle ABC$ में यदि AB > AC तथा BC पर कोई बिंदु D हो, तो AB > AD है। 3 Prove that in a $\triangle ABC$, if AB > AC and D is any point on the side BC, then AB > AD.
- 23. आकृति में △PQR की भुजा QR को S तक बढ़ाया गया है। यदि ∠PQR और ∠PRS के 3 समद्रिभाजक T पर मिलते हैं, तो सिद्ध कीजिए कि $2 \angle QTR = \angle QPR$ है।

In figure, the side QR of \triangle PQR is produced to a point S. If the bisector of \angle PQR and \angle PRS meet at T then prove that $2\angle$ QTR = \angle QPR.

24. दी गई आकृति में ABCD एक समचतुर्भुज है, जिसमें AC=16 cm और AB=10 cm है। 3 समचतुर्भुज का क्षेत्रफल ज्ञात कीजिए।

Page - 6

http://jsuniltutorial.weebly.com/

In the given figure ABCD is a rhombus with AC = 16 cm and AB = 10 cm. What is the area of the rhombus ABCD.

खण्ड-द/SECTION-D

प्रश्न संख्या 25 से 34 में प्रत्येक के 4 अंक हैं। Question numbers 25 to 34 carry four marks each.

Prove that
$$\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}}$$
 is a rational.

27. बहुपद $f(x) = x^4 - 2x^3 + 3x^2 - ax + b$ को (x - 1) और (x + 1) से भाग देने पर शेषफल क्रमश: 5 और 19 है। f(x) को (x - 2) से भाग देने पर शेषफल ज्ञात कीजिए।

http://jsuniltutorial.weebly.com/

Page - 7

ACBSE Coaching for Mathematics and Science

On dividing $f(x) = x^4 - 2x^3 + 3x^2 - ax + b$ by (x - 1) and (x + 1) we get remainder 5 and 19 respectively. Find the remainder when f(x) is divided by (x - 2).

28. C का ऐसा मान ज्ञात कीजिए कि बहुपद $2x^3 - 7x^2 - 3x + C$, (2x + 3) से पूर्णत: विभाजित हो जाए। **4** बहुपद के गुणनखण्ड कीजिए।

Find the value of C for which the polynomial $2x^3 - 7x^2 - 3x + C$ is exactly divisible by (2x + 3). Hence factorize the polynomial.

29.
$$x + y + z = 0$$
 हो, तो सिद्ध कीजिए कि $x^3 + y^3 + z^3 = 3xyz$.

If x + y + z = 0 then show that $x^3 + y^3 + z^3 = 3xyz$.

30. निम्नलिखित बिंदुओं को आलेखित कर के बिंदुओं को क्रमानुसार जोड़िए और आकृति PQRS को
4 पहचानिए : P(1, 1), Q(4, 2), R(4, 8), S(1, 10) बिंदु P का x-अक्ष व y-अक्ष पर दर्पण प्रतिबिम्ब लिखिए।

Plot the following points. Join them in order and identify the figure, PQRS thus obtained : P(1, 1), Q(4, 2), R(4, 8), S(1, 10). Write mirror image of point P on *x*-axis and *y*-axis.

31. ΔABC की भुजाओं AB और AC को क्रमश: P तथा Q तक बढ़ाया गया है। यदि ∠CBP और **4** ∠BCQ के समद्विभाजक क्रमश: BO और CO हैं, जो कि बिंदु O पर मिलते हैं, तो सिद्ध कीजिए कि

The sides AB and AC of \triangle ABC are produced to point P and Q respectively. If bisectors BO and CO of \angle CBP and \angle BCQ respectively meet at point O, then

32. आकृति में OA = OB, OC = OD तथा ∠AOB = ∠COD है। सिद्ध कीजिए कि AC = BD है।

4

In figure OA = OB, OC = OD and $\angle AOB = \angle COD$. Prove that AC = BD.

अथवा/OR आकृति में AD = BD है। सिद्ध कीजिए कि BD < AC है।

33. आकृति में ∠ACB एक समकोण है और AC=CD तथा CDEF एक समांतर चतुर्भुज है। यदि
∠FEC=10° हो, तो ∠BDE परिकलित कीजिए।

In figure $\angle ACB$ is a right angle and AC = CD and CDEF is a parallelogram. If $\angle FEC = 10^{\circ}$ then calculate $\angle BDE$.

34. Prove that two triangles are congruent if any two angles and the included side of one triangle is equal to any two angles and included side of the other triangle.

4

http://jsuniltutorial.weebly.com/