Ionization energy, Electron Affinity, Eletronegativity

• Ionization Potential or Ionization energy:

The amount of energy required to remove an electron from an isolated gaseous atom is known as ionization potential or ionization energy.

Units: eV (electron volt) or kilo Joule/mole

The first ionization energy is always less than second ionization energy.

Na (g) \longrightarrow Na⁺ (g) + e⁻ +496 kJ/mole first ionization energy Na⁺ (g) \longrightarrow Na²⁺(g) + e⁻ +4560 kJ/mole second ionization energy

Tendencies in the Periodic Table:

Generally speaking, atomic ionization energies decrease down a group (i.e. column) of the periodic table, and increases left-to-right across a period.

• Electron Affinity:

The amount of energy <u>released</u> or <u>required</u> to add an electron in gaseous state of an atom is known as electron affinity.

Units: (electron Volt) or kilo Joule/mole

$$\mathbf{F} + \mathbf{e}^- \longrightarrow \mathbf{F}^- 328 \text{ kJ/mole}$$

Energy Released = + ve value of Electron Affinity

Energy Required = -ve value of Electron Affinity

Tendencies in Periodic Table:

Electron affinities generally become smaller as we go down a column of the periodic table and electron affinity increases as we go from left to right in the periods of the periodic table. (both with a few exceptions!)

• Eletronegativity

It is the ability of an atom to attract the shared pair of electrons towards it self.

Fluorine has the highest electronegativity which is of 4 and Cs has lowest electronegativity which is of 0.79. Their exit different scales for the electronegativity, the most common ones are the Pauling values.

Tendencies in the Periodic Table:

Electronegativity values decrease down the groups and increases from left to right in the periodic table (for main group elements).