JSUNIL UTORIAL

Class IX Subject- Mathematics - Semester -1

Time: 3-31/2 hrs.
MM: $\mathbf{8 0}$
GENERAL INSTRUCTIONS:

1. All questions are compulsory.
2. The question paper consists of thirty four questions divided into four sections $A, B, C \& D$.

Section A comprises of ten questions of 01 marks each, Section B comprises of eight questions of 02 marks each, Section C comprises of ten questions of 03 marks each and section D comprises of six questions of 04 marks each.
3. All questions in section A are multiple choice questions where you are to select one correct option out of given four.
4. There is no overall choice. However internal choice has been provided in one question of 02 marks each, three questions of 03 marks each and two questions of 04 mark each. You have to attempt only one of the alternatives in all such questions.
5. Use of calculators is not permitted.

Section - ' A ' (carry one mark each)

1. A rational number equivalent to $5 / 7$ is:
(a) $15 / 17$
(b) $25 / 27$
(c) $10 / 14$
(d) $10 / 27$
2. Given polynomial then is: $p(t)=t^{4}-t^{3}+t^{2}+6$, then $p(-1)$ is:
(a) 6
(b) 9
(c) 3
(d) -1
3. In quad $A B C D B M \perp A C$ and $D N \perp A C$, such that $B M=D N$. If $B R=8 \mathrm{~cm}$ then $B D$ is
a) 4 cm
b) 2 cm
c) 12 cm
d) 16 cm
4. Given two points A and B, there is one and only one that contains both the point. This statement is known as
a) Axiom
b) Theorem
c) Postulates
d) All of these
5. Given a line segment $A B$. P is the point on the perpendicular bisector of line segment $A B$, such that $A P=10 \mathrm{~cm}$, also $A B=12 \mathrm{~cm}$ then distance of point P from line segment $A B$ is
a) 6 cm
b) 5 cm
c) 7 cm
d) 8 cm
6. If the two complementary angles are in the ratio $13: 5$, then the angles are:

JSUNIL UTORIAL

(a) $65^{\circ}, 35^{\circ}$
(b) $65^{\circ}, 25^{\circ}$
(c) $13 x^{\circ}, 5 x^{\circ}$
(d) $25^{\circ}, 65^{\circ}$
7. The square root which number is rational:
(a) 7
(b) 1.96
c) 0.04
(d) 13
8. If polynomial $p(x)=3 x^{4}-4 x^{3}-3 x-1$ is divided by $(x-1)$, then remainder is:
(a) 3
(b) -4
(c)-1
(d) None of these
9. In the figure $<x$ is
a) Reflexive angle
b) Acute angles
c) Obtuse angle
d) Exterior angle
 10. What is the common between the three angles of a triangle \& a linear pair:
(a) angles are equal
(b) in both cases sum of angles is 180°
(c) in triangle there are three angles \& in linear pair there are two angles.
(d) All of these

Section - 'B’ (carry two marks each)

11. Express $23 . \overline{43}$ in form p / q where $\mathrm{q} \neq 0$
12. Find the value of x, if $A B \| C D$

Fig. 13.1

fig.16.1
13. In fig 13.1 if $A C=B D$, then prove that $A B=C D$.

14 The sides of a triangular plot are in the ratio of 3:5:7 and its perimeter is 300 m . Find its area.
15. Evaluate $(-1 / 27)^{-2 / 3}$
16. In the given fig.16.1 $\mathrm{DE}=\mathrm{EC}$. Show that $\mathrm{AB}+\mathrm{BC}>\mathrm{AD}$
17. In fig. the side $Y Z$ of $\triangle X Y Z$ is produced to a point P. if the bisectors of $<\mathrm{XYZ}$ and $<\mathrm{XZP}$ meet at point Q . then prove that $<Y Q Z=1 / 2<Y X Z$.

18. If a transversal intersects two lines such that the bisectors $P Q$ and RS of a pair of corresponding angles are parallel, and then prove that two liens PQ and RS are parallel.

SECTION C

Question numbers 19 to 28 carry 3 marks each.
19. Simplify the following by rationalising the denominators

$$
\frac{2 \sqrt{6}}{\sqrt{2}+\sqrt{3}}+\frac{6 \sqrt{2}}{\sqrt{6}+\sqrt{3}}
$$

If $\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}=a-\sqrt{15} b$, find the values of a and b.
20. If $a=9-4 \sqrt{5}$, find the value of $a-\frac{1}{a}$.

OR

If $x=3+2 \sqrt{2}$, find the value of $x^{2}+\frac{1}{x^{2}}$
21. Represent $\sqrt{3.5}$ on the number line.
22. If $(x-3)$ and $x-\frac{1}{3}$ are both factors of $a x^{2}+5 x+b$, show that $a=b$.
23. Find the value of $x^{3}+y^{3}+15 x y-125$ when $x+y=5$.

OR
If $a+b+c=6$, find the value of $(2-a)^{3}+(2-b)^{3}+(2-c)^{3}-3(2-a)(2-b)(2-c)$

JSUNIL UTORIAL

24. In Fig. 5. ABC is an equilateral triangle with coordinates of B and C as $B(-3,0)$ and $C(3,0)$
Find the coordinates of the vertexA.

Fig. 5

25. Factorize:

$$
x^{12}-y^{12}
$$

26. Prove: $a^{3}+b^{3}+c^{3}-3 a b c=\frac{1}{2}(a+b+c)\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]$
27. Locate the points $(5,8),(0,5),(2,5),(5,2),(-3,0),(8,0)$ in the Cartesian plane
28. Find the area of a triangle, two sides of which are 18 cm and 10 cm and the perimeter is 42 cm .

Section - 'D' (carry four marks each)

29. In a qud. $A B C D, B O$ and $C O$ are bisectors o interior angles B and C intersecting at O. Show that $<$ BOC $=90+1 / 2<$ BAC
30. Factories: $x^{3}-23 x^{2}+142 x+120$
31. Factorize : $4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$
32. In Fig. 9, PS is bisector of $\angle \mathrm{QPR}$; $P T \perp R Q$ and $\angle Q>\angle R$. Show that $\angle \mathrm{TPS}=\frac{1}{2}(\angle \mathrm{Q}-\angle \mathrm{R})$.
33. In $\triangle A B C$, right angled at A, (Fig. 10), $A L$ is drawn perpendicular to $B C$. Prove that $\angle \mathrm{BAL}=\angle \mathrm{ACB}$.
34. In Fig. 11, $A B=A D, A C=A E$ and $\angle B A D=\angle C A E$. Prove that $B C=D E$.
jsuniltutorial.weebly.com
