JSMINIL THITBII:
 ACBSE Coaching for OGatinematis and Sclence

Class 9 Chapter Work and energy Solved Numerical problems

1. A force of 10 N causes a displacement or 2 m in a body in its own direction. Calculate the work done by force. 20 j
Solution: the work done by force $=\mathrm{F} \times \mathrm{S}=10 \mathrm{~N} \times 2 \mathrm{~m}=20 \mathrm{~J}$
2. How much force is applied on the body when 150 joule of work is done in displacing the body through a distance of 10 m in the direction of force?(15 N)

Solution: $W=F \times S \Rightarrow F=w / s=150 / 10=15 \mathrm{~N}$
3. A body of 5 kg raised to 2 m find the work done $(98 \mathrm{j})$

Solution: T he work done to raise a body $=\mathrm{PE}=\mathrm{mgh}=5 \mathrm{~kg} \times 9.8 \times 2=98$ joule
4. A work of 4900 j is done on road of mass 50 kg to lift it to a certain height. Calculate the height through which the load is lifted. (10m)

Solution: work done on road to lift $=\mathrm{mgh} \Rightarrow 4900=50 \times 9.8 \mathrm{~h} \Rightarrow \mathrm{~h}=10 \mathrm{~m}$
5. An engine work $54,000 \mathrm{~J}$ work by exerting a force of 6000 N on it. What is the displacement of the force . (9m)

Solution: $S=W / F=54,000 \mathrm{~J} / 6000 \mathrm{~N}=9 \mathrm{~m}$
6. A force of 10 N acting on a body at an angle of 60 deg. with the horizontal direction displaces the body through a distance of 2 m along the surface of a floor. Calculate the work done.

Now let the force or pulling act on the body makes an angle of 30 deg. with the horizontal. What is the value of the force to displace the body through 2 m along the surface of the floor?
$(\operatorname{Cos} 60=1 / 2$. and $\operatorname{Cos} 30=v 3 / 2) \quad[$ ans. $10 \mathrm{~J}, 10 v 3 \mathrm{~N}]$
Solution: $\mathrm{w}=\mathrm{FS} \cos \mathrm{Q}=10 \times 2 \times \operatorname{Cos} 60=20 \times 1 / 2=10 \mathrm{~N}$
$\mathrm{w}=\mathrm{F} \mathrm{S} \cos \mathrm{Q}=10 \times 2 \times \operatorname{Cos} 30=20 \times \mathrm{v} 3 / 2=10 \mathrm{v} 3 \mathrm{~N}$
7. A force of 5 N acting on body at angle of 30 deg. with the horizontal direction displace it horizontally through of distance of 6 m . Calculate the work done. (15v3 J)

Solution: $w=F S \cos Q=5 \times 6 \times v 3 / 2=15 \mathrm{v} 3 \mathrm{~J}$
8. A body of mass 2 kg is moving with a speed of $20 \mathrm{~m} / \mathrm{s}$ Find the kinetic energy. (400J)

Solution: KE $=0.5 \mathrm{mv}^{\wedge} 2=0.5 \times 2 \times 20 \times 20=400 \mathrm{~J}$
9. A moving body of 30 kg has 60 J of KE . Calculate the speed.

Solution: KE $=0.5 \mathrm{mv} \wedge 2 \Rightarrow 60=0.5 \times 30 \times \mathrm{v}^{\wedge} 2 \Rightarrow 60=15 \mathrm{v}^{\wedge} 2 \Rightarrow 60 / 15 \Rightarrow \mathrm{~V}=2 \mathrm{~m} / \mathrm{s}$
10. A hammer of mass 1 kg falls freely from a height of 2 m .Calculate (I) The velocity and (II)

Isurll turasal
 ACBSE Coaching for OKathematics and Science

The KE. of the hammer just before it touches the ground. Does the velocity of hammer depend on the mass of hammer? $(6.29 \mathrm{~m}-2,19.6 \mathrm{~J})$

Solution: $\mathrm{PE}=\mathrm{mgh}=1 \times 9.8 \times 2=19.6 \mathrm{j}$
$P E=K E=0.5 \mathrm{mv}^{\wedge} 2 \Rightarrow 19.6=0.5 \times 1 \mathrm{xv}^{\wedge} 2 \Rightarrow 39.6=\mathrm{v}^{\wedge} 2 \Rightarrow \mathrm{v}=6.29 \mathrm{~m} / \mathrm{s}$

No, velocity of hammer does not depend on the mass of the mass of the hammer as $v=u+$ at
11. Calculate the energy posses by a stone of mass 10 kg kept at a height of 5 m .

If $196 \times 10^{\wedge} 2 \mathrm{~J}$ of energy were used to raise a 40 kg boy above the ground, how high would he be raised? (50m)

Solution: The energy posses by a stone of mass 10 kg kept at a height of $5 \mathrm{~m}=\mathrm{PE}=\mathrm{mgh}=10$ $\times 5 \times 9.8=490 j$
$P E=m g h \Rightarrow 196 \times 10^{\wedge} 2 \mathrm{~J}=40 \times 9.8 \times h=>50 \mathrm{~m}$
12. Calculate the change that should be affected in the velocity of a body to maintain the same KE, if mass of the body is increased to 4 times (half the original velocity)

Solution: New kE/Original KE $=\left[1 / 2 \times 4 m \times V^{\wedge} 2\right] /\left[1 / 2 \times m \times v^{\wedge} 2\right]$
$1 / 4=(\mathrm{V} / \mathrm{v})^{\wedge} 2 \Rightarrow 1 / 2=(\mathrm{V} / \mathrm{v}) \Rightarrow \mathrm{V}=\mathrm{v} / 2$
New velocity will be half the original velocity
13. A machine does 192 J of work in 24 Sec . What is the power of the machine? (8 w)

Solution: $p=w / t=192 \mathrm{~J} / 24 \mathrm{Sec}=8 \mathrm{w}$
14. A man of 50 kg runs up a hill rising himself vertically 10 m in 20 Sec . Calculate power. given $\mathrm{g}=9.8 \mathrm{~m}-1$ (245w)

Solution: $\mathrm{p}=\mathrm{w} / \mathrm{t}=\mathrm{mgh} / \mathrm{t}=(50 \times 9.8 \times 10) / 20=245 \mathrm{w}$
15. A rickshaw puller pulls the rickshaw by applying a force of 100 N . If the rickaw moves with constant velocity of $36 \mathrm{kmh}-1$. Find the power of rickshaw puller. (1000w)

Solution: Force $=100 \mathrm{~N}$
Velocity $=36 \mathrm{k} \mathrm{m} / \mathrm{h}=36 \times 5 / 18=10 \mathrm{~m} / \mathrm{s}$
Power $=$ Force \times Velocity Power $=100 \times 10$
Power = 1000 Watt
16. A athlete weighing 60 kg runs up a staircase having 10 steps each of 1 m in 30 sec .

 ACBSE Coaching for Ohathematics and Science

Calculate power ($\mathrm{g}=9.8 \mathrm{~ms}-1$ 200W)
Solution: $\mathrm{h}=10 \times 1 \mathrm{~m}=10 \mathrm{~m}$
Work done $=$ potential energy $=m g h=60 \times 9.8 \times 10=5880 j$
Power $=5880 / 30=196 w$
17. The heart does 1.5 J of work in each heartbeat. How many times per minute does it beat if its power is 2watt? (80 times)

Solution: Total work $=\mathrm{p} \times \mathrm{t}=120 \mathrm{~J}$,
Number times heartbeat in 1 min. = total work done / work done in each beat

$$
=120 / 1.5=80 \text { times }
$$

18. Calculate the time taken 60 w bulb to consume 3000 J of energy. (50sec.)

Solution: Power $=60 \mathrm{~W}$ and Energy consumed $=3000 \mathrm{~J}$
We know that Power=Energy/Time Taken
Time Taken $=$ Energy Consumed/Power $=3000 / 60=50 \mathrm{sec}$.
19. A horse exerts a force of 200 N to pull the cart. If the horse cart system moves with velocity $36 \mathrm{kmh}-1$ on the level road., then find the power of horse in term of horse power ($1 \mathrm{hp}=746 \mathrm{~W}$) Ans.2.68h.p

Solution: velocity $=36 \mathrm{kmh}-1=10 \mathrm{~m} / \mathrm{s}$
$w=f \times s=2000 \times 10=2000 j$
$P=w / t=2000 j / 1 \mathrm{sec}=2000 \mathrm{w}$
746W = 1hp So, $2000 \mathrm{w}=2000 / 746=2.68$ h.p
20. An electric kettle of 500 W is used to heat water every day for 2 hours. Calculate the number of unit of electrical energy consumed y it in 10 days. (Ans: 10 units)

Solution: $\mathrm{E}=\mathrm{Pt}=500 \mathrm{w} \times 10 \times 2 \mathrm{~h}=10000 \mathrm{wh}=10 \mathrm{kwh}=10$ unit
21. Calculate the cost of using a 2 kwh immersion rod for heating water in a house for one hour each day for 60 days if the rate is Rs. 1.50 per unit kWh. (Rs. 180)

Solution: $\mathrm{E}=\mathrm{Pt}=2 \mathrm{kw} \times 60 \times 1 \mathrm{~h}=120 \mathrm{kwh}=120$ unit
The cost of using a 2 kwh immersion rod for heating water $=120 \times 1.5=$ Rs. 180
22. In an experiment to measure his power, a student records the time taken by him in running up a flight of steps on a staircase. Use the following data to calculate the power of the student : Number of steps $=28$; Height of each step $=20 \mathrm{~cm}$; Time taken $=5.4 \mathrm{~s}$.

Mass of student $=55 \mathrm{Kg}$; Acceleration due to gravity $=9.8 \mathrm{~m} \mathrm{~s}-2$
Solution. Power $=\mathrm{w} / \mathrm{t}=\mathrm{mgh} / \mathrm{t}=55 \times 9.8 \times(28 \times 0.20) / 5.4=559 \mathrm{~J}$

JSMINL HITIBII:
 ACBSE Coaching for D(athematics and Science

23. A bullet of mass 15 g has a speed of $400 \mathrm{~m} / \mathrm{s}$. What is its kinetic energy ? The bullet strikes a thick target and is brought to rest in 2 cm , calculate the average net force acting on the bullet. What happens to kinetic energy originally in the bullet?

Solution. K.E $=1 / 2 \mathrm{mv} \wedge 2=0.5 \times 0.015 \mathrm{~kg} \times(400 \times 400)=1200 \mathrm{~J}$.
Work done $=$ Change in K.E.
As final velocity $=0$. Because change in $\mathrm{KE}=\mathrm{Kf}-\mathrm{Ki}=1200 \mathrm{~J}$
Therefore, $\mathrm{F} \times \mathrm{d}=1200$.
(where F is the average force)
$\mathrm{F}=1200 / 2 \times 10^{\wedge}-2=6 \times 10^{\wedge} 4 \mathrm{~N}$.
The kinetic energy is eventually converted to heat energy.
24. The power of a heart which beats 72 times in a minute is 1.2 kW . Calculate the work done by heart for each beat. (1 kJ)

Solution: $\mathrm{P}=1200 \mathrm{~W}$ and $\mathrm{T}=60 \mathrm{~s}$
$\mathrm{W}=\mathrm{P} \times \mathrm{T}=1200 \times 60=72000 \mathrm{~J}$
In 72 times heart beats 72000j energy used
In 1 time $=72000 / 72=1000 \mathrm{~J}$
Work done by the heart in every beat is 1 KJ
25. When loading a truck, a man lifts boxes of 100 N each through a height of 1.5 m .
(a) How much work does he do in lifting one box ?
(b) How much energy is transferred when one box is lifted ?
(c) If the man lifts 4 boxes per minute, at what power is he working? ($\mathrm{g}=10 \mathrm{~m} \mathrm{~s}-2$)

Solution: (a) Work done in lifting one box $=F \times d=100 \times 1.5=150 \mathrm{~J}$.
(b) $\mathrm{W}=\mathrm{E}=150 \mathrm{~J}$.
(c) Power $=$ Work done $/$ Time $=(150 \times 4) / 60=10 \mathrm{~W}$

