JSUIIL THORIML ACBSE Coaching for Ohathematics and Science

Class 9 Number System study Material

Q. Define rational number and irrational Number?
Q. Prove that (i) $\sqrt{3}-\sqrt{2}$ (ii) $2 / \sqrt{3}$ are irrational numbers
Q. Represent on each number on number line:
(i) $3 / 7$ (ii) $13 / 7$ (iii) $4 / 9$ (iv) 2.5 (v) $\sqrt{2}$ (v) $\sqrt{5}$ (vi) $\sqrt{4.9}$ (vii) $(2+\sqrt{ } 3)$
Q. Visualize the representation of $5.3 \overline{7}$ on the number line upto 5 decimal place. i.e. 5.37777 .
Q. Find the three rational numbers between
(i) $\sqrt{ } 2$ and $\sqrt{ } 3$ (ii) $1 / 3$ and $1 / 2$ (iii) $0.2323323332 \ldots$....and $0.252552555255552 \ldots$
Q. Find two irrational numbers between (i) 2 and 2.5 . (ii) 0.12 and 0.13 . (iii) 0.3030030003 ...and 0.3010010001.......
Q. Prove that: (i) Sum and difference of a rational and an irrational number is always an irrational number.
(ii) Sum and difference of two irrational numbers is either rational or irrational number.
(ii) Product of a non-zero rational number with an irrational number is either rational or irrationals
(iv) Product of an irrational with a irrational is not always irrational.
Q. Examine whether the following numbers are rational or irrational:
(i) $(2-\sqrt{ } 3)^{2}$
(ii) $(\sqrt{ } 2+\sqrt{ } 3)^{2}$
(iii) $(3+\sqrt{ } 2)(3-\sqrt{ } 2)$
(iv) $\sqrt[3]{3}$
Q. What is surd? [SURDS: Any irrational number of the form $\sqrt[n]{a}$ is given a special name surd. Where ' a ' is called Radicand, it should always be a rational number. Also the symbol $\sqrt[n]{ }$ is called the radical sign and the index n is called order of the surd.
Q. Express the following in the form of p/q. (i) $0 . \overline{3}$ (ii) $0 . \overline{37}$ (iii) $2.2 \overline{35}$ (iv) $0 . \overline{621}$
Q. Which is greater is each of the following: (i) $\sqrt[3]{16}$ and $\sqrt[5]{8}$
(ii) $\sqrt{\frac{1}{2}} \quad$ and $\sqrt[3]{\frac{1}{3}}$
Q. Q. Arrange $\sqrt{2}, \sqrt[3]{3}$ and $\sqrt[4]{5}$ in ascending order
Q. If $x=1 /(2+\sqrt{ } 3)$ then find the value of $x^{3}-x^{2}-11 x+3$
Q. if $x=3+\sqrt{ } 8$ and $y=3-\sqrt{ } 8$ then find value of $\frac{1}{x^{2}}+\frac{1}{y^{2}}$

Jsurll turojial ACBSE Coaching for O(athematies and Science

Q. Simplify:
(i) $\sqrt{6}-\sqrt{216}+\sqrt{96}=15 \sqrt{6}-\sqrt{6^{2}} \times 6+\sqrt{16 \times 6}$
(ii) $5 \sqrt[3]{250}+7 \sqrt[3]{16}-14 \sqrt[3]{54}$
(ii) $5 \sqrt[3]{250}+7 \sqrt[3]{16}-14 \sqrt[3]{54}$
(iii) $4 \sqrt{3}+3 \sqrt{48}-\frac{5}{2} \sqrt{\frac{1}{3}}$

Ans. $13 \sqrt{6}$
Ans. $-3 \sqrt[3]{2}$
Ans. $-3 \sqrt[3]{2}$
Ans. $\frac{91}{6} \sqrt{3}$
Q. Find value of a and b if $(3+2 \sqrt{ } 2) /(3-\sqrt{ } 2)=a+b \sqrt{2}$
Q. (i) if $x=3-\sqrt{8}$ then show that $x^{3}+\frac{1}{x^{3}}=198$ (ii) If $x=0.125$, find the value of $\left(\frac{1}{x}\right)^{\frac{1}{3}}$
Q. If $x=1+2^{1 / 3}+2^{2 / 3}$ then show that $x^{3}-3 x^{2}-3 x-1=0$ (ii) 25 . If $x=9-4 \sqrt{ } 5$, find $\sqrt{ } x-1 / \sqrt{ } x$
Q. If $x=1+\sqrt{2}+\sqrt{3}$ then show that $x^{4}-4 x^{3}-4 x^{2}+16 x-8=0$
Q. Simplify: (i) $\frac{16 \times 2^{n+1}-4 \times 2^{n}}{16 \times 2^{n+2}-2 \times 2^{n+2}}$
(ii) $\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}$
Q. Rationalise the denominator of each of the following
(i) $\frac{1}{1+\sqrt{2}-\sqrt{3}}$
(ii) $\frac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}$ (iii) $\frac{3}{\sqrt[3]{9}}$
(iv) $\frac{5}{\sqrt[4]{125}}$
Q. If $\mathrm{a}=9-4 \sqrt{ } 5$, Show that $\left(a-\frac{1}{a}\right)^{2}=320$ (ii) If $\mathrm{X}=1-\sqrt{2}$, Show that $\left(x-\frac{1}{x}\right)^{3}=8$
Q. Find the value x, (i) if $5^{x-3} \times 3^{2 x-8}=225$
\{ ans=5)
(ii) if $3^{x}=\left(\frac{1}{27^{x}}\right)$
Q. If $x=(\sqrt{2}+1) \div(\sqrt{2}-1)$ and $y=(\sqrt{2}-1) \div(\sqrt{2}+1)$ find the value of $x^{2}+y^{2}+x y$
Q. if $x=7+4 \sqrt{ } 3$ and $x y=1$. Find $\frac{1}{x^{2}}+\frac{1}{y^{2}}$
\{Ans: 194\}
Q. If $9^{x+2}=240+9^{x}$, then find value of x
\{ans: 1/2\}
Q. if $\mathrm{x}=\frac{\sqrt{p+2 q}+\sqrt{p-2 q}}{\sqrt{p+2 q}-\sqrt{p-2 q}}$ then show that $\mathrm{qx}^{2}-\mathrm{px}+\mathrm{q}=0$
Q. (i) Show that $\frac{1}{1+a^{x-y}}+\frac{1}{1+a^{y-x}}=1$ (ii) Show that $\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}=5$
Q. (i) if $x^{2}+\frac{1}{x^{2}}=14$ then find the value of x (ii) Find the product $\sqrt[3]{2} \times \sqrt[4]{2} \times \sqrt[12]{32}$
Q. Find the value of x if $\sqrt{15-x \sqrt{14}}=\sqrt{8}-\sqrt{7} \quad\{$ ans $=4\}$
Q. if $\frac{1+\sqrt{2}}{1-\sqrt{2}}+\frac{1-\sqrt{2}}{1+\sqrt{2}}=a+b \sqrt{2}$, then find a and b
Q. Prove that : $\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots \ldots \ldots .+\frac{1}{\sqrt{8}+3}=2$

