

7

TRIANGLES NCERT SOLUTIONS

EXERCISE 7.1

- **Q.1.** In quadrilateral ACBD, AC = AD and AB bisects $\angle A$ (see Fig.). Show that $\triangle ABC \cong \triangle ABD$. What can you say about BC and BD?

 $[Q AB bisects \angle A]$ AB = AB [Common]

 \therefore $\triangle ABC \cong \triangle ABD$.

[By SAS congruence] **Proved.**Therefore, BC = BD. (CPCT). **Ans.**

Q.2. ABCD is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$ (see Fig.). Prove that

- $(i) \ \Delta ABD \cong \Delta BAC$
- (ii) BD = AC(iii) $\angle ABD = \angle BAC$
- **Sol.** In the given figure, ABCD is a quadrilateral in which AD = BC and \angle DAB = \angle CBA.

In $\triangle ABD$ and $\triangle BAC$, we have

Proved

- **Q.3.** AD and BC are equal perpendiculars to a line segment AB (see Fig.). Show that CD bisects AB.
- Sol. In $\triangle AOD$ and $\triangle BOC$, we have, $\angle AOD = \angle BOC$ [Vertically opposite angles) $\angle CBO = \angle DAO$ [Each = 90°] and AD = BC[Given] $\therefore \triangle AOD \cong \triangle BOC$ [By AAS congruence]

 \therefore \triangle AOD \cong \triangle BOC [By AAS congruent Also, AO = BO [CPCT] Hence, CD bisects AB **Proved.**

В

Q.4. l and m are two parallel lines intersected by another pair of parallel lines p and q (see Fig.). Show that $\triangle ABC \cong \triangle CDA$.

In \triangle ABC and \triangle CDA, we have,

[Alternate angles]

$$\angle BCA = \angle DAC$$

[Alternate angles]

$$AC = AC$$

[Common]

$$\triangle$$
 ABC \cong \triangle CDA [By ASA congruence]

Proved.

- **Q.5.** Line l is the bisector of an angle A and B is any point on l. BP and BQ are perpendiculars from B to the arms of $\angle A$ (see Fig.). Show that :
 - (i) $\triangle APB \cong \triangle AQB$
 - (ii) BP = BQ or B is equidistant from the arms of $\angle A$.
- **Sol.** In \triangle APB and \triangle AQB, we have

[l is the bisector of $\angle A$]

 $[Each = 90^{\circ}]$

$$AB = AB$$

[Common]

$$\therefore$$
 $\triangle APB \cong \triangle AQB$ [By AAS congruence]

$$Also, BP = BQ$$

[By CPCT]

i.e., B is equidistant from the arms of $\angle A$. **Proved**

Q.6. In the figure, AC = AE, AB = AD and $\angle BAD = \angle EAC$. Show that BC = DE.

$$\Rightarrow \angle BAD + \angle DAC = \angle EAC + \angle DAC$$

[Adding ∠DAC to both sides]

$$\Rightarrow$$
 $\angle BAC = \angle EAC$... (i)

Now, in $\triangle ABC$ and $\triangle ADE$, we have

$$AC = AE$$
 [Given)

$$\Rightarrow$$
 $\angle BAC = \angle DAE \text{ [From (i)]}$

$$\triangle$$
 ABC \cong \triangle ADE [By SAS congruence]

$$\Rightarrow$$
 BC = DE.

[CPCT] Proved.

Q.7. AB is a line segment and P is its midpoint. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$ (see Fig.). Show

- (i) $\Delta DAP \cong \Delta EBP$ (ii) AD = BE
- **Sol.** In $\triangle DAP$ and $\triangle EBP$, we have

$$AP = BP$$
 [Q P is the mid-
point of line segment AB]

$$\angle BAD = \angle ABE$$
 [Given]

AD = BE

$$[Q \angle EPA = \angle DPB \Rightarrow \angle EPA + \angle DPE \\ = \angle DPB + \angle DPE] \quad A$$

$$\therefore$$
 \triangle DPA \cong \triangle EPB

Q.8. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point

- D is joined to point B (see Fig.). Show that: (i) $\triangle AMC \cong \triangle BMD$
 - (ii) $\angle DBC$ is a right angle.
- (iii) $\triangle DBC \cong \triangle ACB$

(iv)
$$CM = \frac{1}{2}AB$$

Sol. In $\triangle BMB$ and $\triangle DMC$, we have

(i)
$$DM = CM$$

$$BM = AM$$

[O M is the mid-point of AB]

[Vertically opposite angles]

$$\therefore \Delta AMC \cong \Delta BMD$$

[By SAS]

Proved.

AC | BD [O \(\subseteq \text{DBM} \) and \(\subseteq \text{CAM} \) are alternate angles] (ii) $\angle DBC + \angle ACB = 180^{\circ}$ [Sum of co-interior angles]

[O \angle ACB = 90°] **Proved.**

$$\Rightarrow$$
 $\angle DBC = 90^{\circ}$ **Proved.**

(iii) In $\triangle DBC$ and $\triangle ACB$, we have

$$DB = AC$$

 $BC = BC$

[CPCT] [Common]

 $\angle DBC = \angle ACB$

 $[Each = 90^{\circ}]$

 \therefore $\triangle DBC \cong \triangle ACB$

[By SAS] **Proved.** [CPCT]

(iv)
$$\therefore$$
 AB = CD

$$\Rightarrow \quad \frac{1}{2}AB = \frac{1}{2}CD$$

Hence,
$$\frac{1}{2}AB = CM$$

[Q CM =
$$\frac{1}{2}$$
 CD] **Proved.**

EXERCISE 7.2

- **Q.1.** In an isosceles triangle ABC, with AB = AC, the bisectors of $\angle B$ and $\angle C$ intersect each other at O. Join A to O. Show that :
 - (i) OB = OC (ii) AO bisects $\angle A$.
 - **Sol.** (i) $AB = AC \Rightarrow \angle ABC = \angle ACB$

[Angles opposite to equal sides are equal]

$$\frac{1}{2} \angle ABC = \frac{1}{2} \angle ACB$$

[Q OB and OC are bisectors of ∠B and ∠C respectively]

 \Rightarrow OB = OC

[Sides opposite to equal angles are equal]

Again,
$$\angle \frac{1}{2}$$
ABC = $\frac{1}{2}$ \angle ACB

In \triangle ABO and \triangle ACO, we have

$$AB = AC$$

OB = OC

[Given] [Proved above]

[Proved above] [SAS congruence]

$$\Rightarrow \Delta ABO = \angle CAO$$

[CPCT]

- \Rightarrow AO bisects \angle A **Proved.**
- **Q.2.** In $\triangle ABC$, AD is the perpendicular bisector of BC (see Fig.). Show that $\triangle ABC$ is an isosceles triangle in which AB = AC.

Sol. In \triangle ABD and \triangle ACD, we have

$$\angle ADB = \angle ADC$$
 [Each = 90°]

$$BD = CD [Q AD bisects BC]$$

$$AD = AD$$
 [Common]
 $\therefore \triangle ABD \cong \triangle ACD$ [SAS]

$$\therefore \quad AB = AC \qquad [CPCT]$$

Hence, $\triangle ABC$ is an isosceles triangle. **Proved.**

Q.3. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see Fig.). Show that these altitudes are equal.

Sol. In $\triangle ABC$,

$$AB = AC$$
 [Given]

$$\Rightarrow$$
 \angle B = \angle C [Angles opposite to equal sides of a triangle are equal]

Now, in right triangles BFC and CEB,

- ∠BFC = ∠CEB $[Each = 90^{\circ}]$ ∠FBC = ∠ECB
- [Pproved above] BC = BC
- Hence, BE = CF

- **Q.4.** ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see Fig.). Show that
 - (i) $\triangle ABE \cong \triangle ACF$
 - (ii) AB = AC, i.e., ABC is an isosceles triangle.
 - **Sol.** (i) In \triangle ABE and ACF, we have
 - BE = CF[Given]
 - $\angle BAE = \angle CAF$ [Common]
 - $\angle BEA = \angle CFA$ [Each = 90°]
 - So, $\triangle ABE \cong \angle ACF$ [AAS] Proved. (ii) Also, AB = AC[CPCT]
 - i.e., ABC is an isosceles triangle Proved.

- AB = AC
- $\angle ABC = \angle ACB$...(i)

[Angles opposite to equal sides are equal]

Now, in isosceles $\triangle DCB$, we have

- BD = CD
- $\angle DBC = \angle DCB$...(ii)

[Angles opposite to equal sides are equal]

Adding (i) and (ii), we have

- $\angle ABC + \angle DBC = \angle ACB + \angle DCB$
- $\Rightarrow \angle ABD = \angle ACD$ **Proved.**
- **Q.6.** $\triangle ABC$ is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see Fig.). Show that $\angle BCD$ is a right angle.

 $\angle ACB = \angle ABC$...(i)

[Angles opposite to equal sides are equal]

- AB = AD[Given]
 - [O AB = AC]AD = AC

$$\angle ACB + \angle ACD = \angle ABC + \angle ADC$$

 $\Rightarrow \angle BCD = \angle ABC + \angle ADC$...(iii)

Now, in $\triangle BCD$, we have

 $\angle BCD + \angle DBC + \angle BDC = 180^{\circ}$ [Angle sum property of a triangle]

Hence, $\angle BCD = 90^{\circ}$ or a right angle **Proved.**

Q.7. ABC is a right angled triangle in which $\angle A = 90^{\circ}$ and AB = AC. Find $\angle B$ and $\angle C$.

$$\angle A = 90^{\circ}$$
 and $AB = AC$ [Given]

We know that angles opposite to equal sides of an isosceles triangle are equal.

So,
$$\angle B = \angle C$$

Since, $\angle A = 90^{\circ}$, therefore sum of remaining two angles = 90° .

Hence, $\angle B = \angle C = 45^{\circ}$ Answer.

So,
$$AB = BC = AC$$

Now, $AB = AC$

$$\Rightarrow \angle ACB = \angle ABC$$
 ...(i)

[Angles opposite to equal sides of a triangle are equal]

Again,
$$BC = AC$$

$$\Rightarrow \angle BAC = \angle ABC \dots (ii)$$

[same reason]

Now, in
$$\triangle ABC$$
,

$$\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$$
 [Angle sum property of a triangle]

$$\Rightarrow$$
 $\angle ABC + \angle ABC + \angle ABC = 180^{\circ}$ [From (i) and (ii)]

$$\Rightarrow$$
 3 \angle ABC = 180°

$$\Rightarrow$$
 $\angle ABC = \frac{180^{\circ}}{3} = 60^{\circ}$

Also, from (i) and (ii)

$$\angle ACB = 60^{\circ} \text{ and } \angle BAC = 60^{\circ}$$

Hence, each angle of an equilateral triangle is 60° **Proved.**

EXERCISE 7.3

Q.1. $\triangle ABC$ and $\triangle DBC$ are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see Fig.). If AD is extended to intersect BC at P, show that

$$(ii) \ \Delta ABP \cong \Delta ACP$$

- (iii) AP bisects $\angle A$ as well as $\angle D$.
- (iv) AP is the perpendicular bisector of BC.

Sol. (i) In
$$\triangle$$
 ABD and \triangle ACD, we have

$$\therefore$$
 $\triangle ABD \cong \triangle ACD$ [SSS congruence]

Proved.

(ii) In $\triangle ABP$ and $\triangle ACP$, we have

AB = AC [Given]

∠BAP = ∠CAP [Q ∠BAD = ∠CAD, by CPCT]

AP = AP [Common]

∴
$$\triangle$$
ABP \cong \triangle ACP [SAS congruence] **Proved.**

(iii) $\triangle ABD \cong \triangle ADC$ [From part (i)]

 \Rightarrow $\angle ADB = \angle ADC$ (CPCT)

 \Rightarrow 180° – \angle ADB = 180° – \angle ADC

⇒ Also, from part (ii), ∠BAPD = ∠CAP [CPCT]

∴ AP bisects ĐA as well as ∠D. Proved.

(iv) Now, BP = CP

and $\angle BPA = \angle CPA$ [By CPCT]

But $\angle BPA + \angle CPA = 180^{\circ}$ [Linear pair]

So, 2∠BPA = 180°

Or, $\angle BPA = 90^{\circ}$

Since BP = CP, therefore AP is perpendicular bisector of BC.

Proved.

Q.2. AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that

(i) AD bisects BC (ii) AD bisects $\angle A$.

Sol. (i) In \triangle ABD and \triangle ACD, we have

 $\angle ADB = \angle ADC$ [Each = 90°] AB = AC [Given]

AD = AC [Given] AD = AD [Common] $\therefore \triangle ABD \cong \triangle ACD$ [RHS congruence]

 $\therefore \quad BD = CD \qquad [CPCT]$

Hence, AD bisects BC.
(ii) Also, ∠BAD = ∠CAD

Hence, AD bisects $\angle A$.. **Proved.**

Q.3. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of Δ PQR (see Fig.). Show that:

- (i) $\triangle ABM \cong \triangle PQN$ (ii) $\triangle ABC \cong \triangle PQR$
- **Sol.** (i) In $\triangle ABM$ and $\triangle PQN$, we have

$$BM = QN$$

$$[Q BC = QR]$$

$$\Rightarrow \frac{1}{2}BC = \frac{1}{2}QR]$$

AB = PQ [Given] AM = PN [Given]

 $\therefore \Delta ABM \cong \Delta PQN$ [SSS congruence] **Proved.**

 $\Rightarrow \angle ABM = \angle PQN \qquad [CPCT]$

[Given]

(ii) Now, in $\triangle ABC$ and $\triangle PQR$, we have

$$AB = PQ$$

∠ABC = ∠PQR [Proved above]

BC = QR[Given]

- \therefore $\triangle ABC \cong \triangle PQR$ [SAS congruence] Proved.
- Q.4. BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.
- **Sol.** BE and CF are altitudes of a \triangle ABC.

$$\therefore \angle BEC = \angle CFB = 90^{\circ}$$

Now, in right triangles BEB and CFB, we have

Hyp. BC = Hyp. BC[Common]

Side BE= Side CF [Given]

 $\therefore \Delta BEC \cong \Delta CFB$ [By RHS congruence rule]

∴ ∠BCE = ∠CBF [CPCT]

Now, in $\triangle ABC$, $\angle B = \angle C$

AB = AC[Sides opposite to equal angles are equal]

Hence, $\triangle ABC$ is an isosceles triangle. **Proved.**

- **Q.5.** ABC is an isosceles triangle with AB = AC. Draw $AP \perp BC$ to show that $\angle B = \angle C$.
- **Sol.** Draw AP \perp BC.

In $\triangle ABP$ and $\triangle ACP$, we have

AB = AC[Given]

 $\angle APB = \angle APC$ $[Each = 90^{\circ}]$ AB = AP[Common]

 $\therefore \Delta ABP \cong \Delta ACP$ [By RHS congruence rule]

Also, $\angle B = \angle C$ **Proved.** [CPCT]

EXERCISE 7.4

- **Q.1.** Show that in a right angled triangle, the hypotenuse is the longest side.
- **Sol.** ABC is a right triangle, right angled at B.

Now, $\angle A + \angle C = 90^{\circ}$

 \Rightarrow Angles A and C are each less than 90°.

 $\angle B > \angle A$ Now,

> AC > BC...(i)

[Side opposite to greater angle is longer]

∠B > ∠C Again. AC > AB

...(ii)

- Also, $\angle PBC < \angle QCB$. Show that AC > AB. **Sol.** $\angle ABC + \angle PBC = 180^{\circ}$ [Linear pair]
 - $\angle ABC = 180^{\circ} \angle PBC$...(i)

Similarly, $\angle ACB = 180^{\circ} - \angle QCB$...(ii)

It is given that $\angle PBC < \angle QCB$

$$\Rightarrow$$
 AB < AC

$$\Rightarrow$$
 AC > AB **Proved.**

Q.3. In the figure, $\angle B < \angle A$ and $\angle C < \angle D$. Show that AD < BC.

 \Rightarrow

[Side opposite to greater angle is longer]

BO

Adding (i) and (ii)

$$BO + CO > AO + DO$$

$$\Rightarrow$$
 BC $>$ AD

...(i)

- **Q.4.** AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see Fig.). Show that $\angle A > \angle C$ and $\angle B > \angle D$.
- Sol. Join AC.

Mark the angles as shown in the figure. In ΔABC ,

$$\Rightarrow \angle 2 > \angle 4$$

[Angle opposite to longer side is greater] In ΔADC ,

CD > AD [CD is the longest side]
$$\angle 1 > \angle 3$$
 ...(ii)

[Angle opposite to longer side is greater] Adding (i) and (ii), we have

$$\angle 2 + \angle 1 > \angle 4 + \angle 3$$

$$\Rightarrow$$
 $\angle A > \angle C$

$$\angle A > \angle C$$
 Proved.

Similarly, by joining BD, we can prove that $\angle B > \angle D$.

Sol.
$$PR > PQ$$

$$\angle PQR > \angle PRQ$$
 ...(i)

[Angle opposite to longer side is greater]

$$\angle QPS > \angle RPS$$
 [* PS bisects $\angle QPR$] ...(ii)

In $\triangle PQS$, $\angle PQS + \angle QPS + \angle PSQ = 180^{\circ}$

$$\Rightarrow \angle PSQ = 180^{\circ} - (\angle PQS + \angle QPS)$$

Similarly in $\triangle PRS$, $\triangle PSR = 180^{\circ} - (\angle PRS + \angle RPS)$

 $\Rightarrow \angle PSR = 180^{\circ} - (\angle PRS + \angle QPS)$ [from (ii) ... (iv)

From (i), we know that $\angle PQS < \angle PSR$

So from (iii) and Iiv), ∠PSQ < ∠PSR

 $\Rightarrow \angle PSR > \angle PSQ$ **Proved**

$$OP \perp \stackrel{\leftrightarrow}{l}$$
.

We have to prove that OP < OQ, OP < OR and OP < OS.

In $\triangle OPQ$, $\angle P = 90^{\circ}$

 \therefore $\angle Q$ is an acute angle (i.e., $\angle Q < 90^{\circ}$)

∴ ∠Q < ∠P

Hence, OP < OQ

[Side opposite to greater angle is longer]

Similarly, we can prove that OP is shorter than OR, OS etc. Proved.

EXERCISE 7.5 (OPTIONAL)

Q.1. ABC is a triangle. Locate a point in the interior of \triangle ABC which is equidistant from all the vertices of \triangle ABC.

Sol. Draw perpendicular bisectors of sides AB, BC and CA, which meets at O.

Hence, O is the required point.

Q.2. In a triangle locate a point in its interior which is equidistant from all the sides of the triangle.

Sol.

. .

Q.3. In a huge park, people are concentrated at three points (see Fig.).

A: where there are different slides and swings for children.

B:near which a man-made lake is situated,

 ${\it C:which}$ is near to a large parking and exit.

Where should an icecream parlour be set up so that maximum number of persons can approach it?

3 .

Draw bisectors $\angle A$, $\angle B$ and $\angle C$ of $\triangle ABC$. Let these angle bisectors meet at O.

O is the required point.

- **Sol.** Join AB, BC and CA to get a triangle ABC. Draw the perpendicular bisector of AB and BC. Let they meet at O. Then O is equidistant from A, B and C. Hence, the icecream pra
- **Q.4.** Complete the hexagonal and star shaped Rangolies [see Fig. (i) and (ii)] by filling them with as many equilateral triangles of side 1 cm as you can. Count the number of triangles in each case. Which has more triangles?

Sol.

