Assignments in Mathematics Class IX (Term 2) 8. QUADRILATERALS

IMPORTANT TERMS, DEFINITIONS AND RESULTS

1 Sum of the angles of a quadrilateral is 360°.
। A diagonal of a parallelogram divides it into two congruent triangles.
1 In a parallelogram,
(i) opposite sides are equal
(ii) opposite angles are equal
(iii) diagonals bisect each other

। A quadrilateral is a parallelogram, if
(i) opposite sides are equal or
(ii) opposite angles are equal or
(iii) diagonals bisect each other or
(iv) a pair of opposite sides is equal and parallel

I Diagonals of a rectangle bisect each other and are equal and vice-versa.
। Diagonals of a rhombus bisect each other at right angles and vice-versa.

। Diagonals of a square bisect each other at right angles and are equal, and vice-versa.
। The line segment joining the mid-points of any two sides of a triangle is parallel to the third side and is half of it.
1 A line through the mid-point of a side of a triangle parallel to another side bisects the third side.
। The quadrilateral formed by joining the mid-points of the sides of a quadrilateral, in order, is a parallelogram.

SUMMATIVE ASSESSMENT

MULTIPLE CHOICE QUESTIONS

A. Important Questions

1. Two consecutive angles of a parallelogram are in the ratio $1: 3$. Then the smaller angle is :
(a) 50°
(b) 90°
(c) 60°
(d) 45°
2. A quadrilateral is a parallelograms if :
(a) both pairs of opposite sides are equal
(b) both pairs of opposite angles are equal
(c) the diagonals bisect each other
(d) all of these
3. ABCD is a rhombus. Diagonal AC is equal to one of its sides. Then $\triangle \mathrm{ABC}$ must be :
(a) a right angled triangle
(b) an equilateral triangle
(c) an isosceles triangle
(d) none of these
4. In the figure, ABCD is a parallelogram. The values of x and y are respectively :

(a) $70^{\circ}, 110^{\circ}$
(b) $70^{\circ}, 70^{\circ}$
(c) $110^{\circ}, 70^{\circ}$
(d) $70^{\circ}, 40^{\circ}$
5. In the given figure, ABCD is a rhombus. If $\angle \mathrm{A}=80^{\circ}$, then $\angle \mathrm{CDB}$ is equal to :

(a) 80°
(b) 90°
(c) 50°
(d) 100°
6. The sum of three angles of a quadrilateral is 3 right angles. Then the fourth angle is a/an :
(a) right angle
(b) obtuse angle
(c) acute angle
(d) reflex angle
7. In the given figure, the measure of $\angle \mathrm{DOC}$ is equal to :

(a) 90°
(b) 180°
(c) 118°
(d) 62°
8. Two adjacent angles of a parallelogram are $2 x+30^{\circ}$ and $3 x-30^{\circ}$. Then the value of x is :
(a) 30°
(b) 60°
(c) 0°
(d) 36°
9. In the figure, $\mathrm{AB} \| \mathrm{DC}$, then the measure of $\angle \mathrm{D}$ is equal to :

ACBSE Coaching for QGathematics and Science

(a) 70°
(b) 140°
(c) 180°
(d) 110°
10. In the rectangle $\mathrm{ABCD}, \angle \mathrm{BAC}=4 x^{\circ}$, if $\angle \mathrm{BCA}=5 x^{\circ}$, then measures of $\angle \mathrm{ACD}$ and $\angle \mathrm{CAD}$ are respectively :

(a) $50^{\circ}, 40^{\circ}$
(b) $40^{\circ}, 50^{\circ}$
(c) $80^{\circ}, 100^{\circ}$
(d) none of these
11. In the figure, D, E and F are the mid-points of the sides AB, BC and CA respectively. If $\mathrm{AC}=8.2 \mathrm{~cm}$, then value of DE is :

(a) 8.2 cm
(b) 4.1 cm
(c) 2.05 cm
(d) none of these
12. In a rectangle $A B C D$, diagonals $A C$ and $B D$ intersect at O . If $\mathrm{AO}=3 \mathrm{~cm}$, then the length of the diagonal BD is equal to :
(a) 3 cm
(b) 9 cm
(c) 6 cm
(d) 12 cm
13. Three angles of a quadrilateral are $75^{\circ}, 90^{\circ}$ and 75°. The fourth angle is :
(a) 90°
(b) 95°
(c) 105°
(d) 120°
14. Diagonals of a parallelogram ABCD intersect at O . If $\angle \mathrm{BOC}=90^{\circ}$ and $\angle \mathrm{BDC}=50^{\circ}$, then $\angle \mathrm{OAB}$ is :
(a) 90°
(b) 50°
(c) 40°
(d) 10°
15. If $A P B$ and $C Q D$ are two parallel lines, then the bisectors of the angles APQ, BPQ, CQP and PQD form :
(a) a square
(b) a rhombus
(c) a rectangle
(d) any other parallelogram
16. The figure obtained by joining the mid-points of the sides of a rhombus, taken in order, is :
(a) a rhombus
(b) a rectangle
(c) a square
(d) any parallelogram
17. The sides $B A$ and $D C$ of a quadrilateral $A B C D$ are produced as shown in the figure. Then which of the following relations is true?

(a) $x+y=\angle 1+\angle 2+\angle 3+\angle 4$
(b) $x-y=\angle 1+\angle 2+\angle 3+\angle 4$
(c) $x+y=2(\angle 1+\angle 2+\angle 3+\angle 4)$
(d) none of these
18. In the figure, P and Q are mid-points of sides $A B$ and $A C$ respectively of $\triangle A B C$. If $P Q=3.5 \mathrm{~cm}$ and $A B=A C=9 \mathrm{~cm}$, then the perimeter of $\triangle A B C$ is :

(a) 20 cm
(b) 23 cm
(c) 25 cm
(d) 27 cm
19. In the figure, if ABCD is a square, then value of x is :

(a) 50°
(b) 55°
(c) 80°
(d) 60°
20. In a parallelogram $A B C D$, bisectors of two adjacent angles A and B meet at O . The measure of the angle AOB is equal to :
(a) 90°
(b) 180°
(c) 60°
(d) 360°
21. Lengths of two adjacent sides of a parallelogram are in the ratio $2: 7$. If its perimeter is 180 cm , then the adjacent sides of the parallelogram are :
(a) $10 \mathrm{~cm}, 20 \mathrm{~cm}$
(b) $20 \mathrm{~cm}, 70 \mathrm{~cm}$
(c) $41 \mathrm{~cm}, 140 \mathrm{~cm}$
(d) none of these
22. If a, b, c and d are four angles of a quadrilateral such that $a=2 b, b=2 c$ and $c=2 d$, then the value of d is :
(a) 36°
(b) 24°
(c) 30°
(d) none of these
23. The triangle formed by joining the mid points of the sides of a right angled triangle is :
(a) an acute angled triangle
(b) an obtuse angled triangle
(c) a right angled triangle
(d) none of these
24. The diagonals of a rectangle PQRS intersect at O . If $\angle \mathrm{ROQ}=60^{\circ}$, then $\angle \mathrm{OSP}$ is equal to :

(a) 90°
(b) 120°
(c) 60°
(d) none of these
25. In the $\triangle \mathrm{ABC}, \angle \mathrm{B}$ is a right angle, D and E are the mid-points of the sides AB and AC respectively. If $A B=6 \mathrm{~cm}$ and $A C=10 \mathrm{~cm}$, then the length of DE is :

(a) 3 cm
(b) 5 cm
(c) 4 cm
(d) 6 cm
26. In a $\triangle \mathrm{ABC}, \mathrm{D}, \mathrm{E}$ and F are respectively the midpoints of BC, CA and AB as shown in the figure. The perimeter of $\triangle \mathrm{DEF}$ is :

(a) $\frac{1}{2}(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})$
(b) $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$
(c) $2(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})$
(d) none of these
27. In a parallelogram $\mathrm{ABCD}, \angle \mathrm{A}=\left(3 x+15^{\circ}\right)$ and $\angle \mathrm{B}=\left(5 x-35^{\circ}\right)$. The measure of $\angle \mathrm{D}$ is :
(a) 125°
(b) 90°
(c) 180°
(d) cannot be determined
28. In the given figure, if ABCD is a parallelogram, then the value of $2 \angle A B C-\angle A D C$ is :

(a) 40°
(b) 220°
(c) 70°
(d) 75°
29. If one angle of a parallelogram is 56° more than three times of its adjacent angle, then measures of all the angles are :
(a) $31^{\circ}, 149^{\circ}, 31^{\circ}, 149^{\circ}$
(b) $59^{\circ}, 121^{\circ}, 59^{\circ}, 121^{\circ}$
(c) $37^{\circ}, 143^{\circ}, 37^{\circ}, 143^{\circ}$
(d) none of these
30. In a trapezium $\mathrm{ABCD}, \mathrm{AB} \| \mathrm{CD}, \angle \mathrm{A}$ $=\left(2 x-35^{\circ}\right), \angle \mathrm{B}=y^{\circ}, \angle \mathrm{C}=85^{\circ}$ and $\angle \mathrm{D}$ $=\left(3 x+65^{\circ}\right)$. The values of x and y are respectively:
(a) $30^{\circ}, 60^{\circ}$
(b) $45^{\circ}, 75^{\circ}$
(c) $75^{\circ}, 115^{\circ}$
(d) $30^{\circ}, 95^{\circ}$
31. In the $\triangle A B C, E$ and F are the mid-points of $A B$ and $A C$ respectively. The altitude AP intersects EF at Q . The correct relation between AQ and QP is :

(a) $\mathrm{AQ}>\mathrm{QP}$
(b) $\mathrm{AQ}=\mathrm{QP}$
(c) $\mathrm{AQ}<\mathrm{QP}$
(d) none of these
32. The quadrilateral formed by joining the mid-points of the sides of a quadrilateral PQRS, taken in order, is a rectangle, if :
(a) PQRS is a rectangle
(b) PQRS is a parallelogram
(c) diagonals of PQRS are perpendicular
(d) diagonals of PQRS are equal
33. The quadrilateral formed by joining the mid-points of the sides of a quadrilateral PQRS, taken in order, is a rhombus, if :
(a) PQRS is a rhombus
(b) PQRS is a parallelogram
(c) diagonals of PQRS are perpendicular
(d) diagonals of PQRS are equal
34. D and E are the mid-points of the sides $A B$ and $A C$ respectively of $\triangle \mathrm{ABC}$. DE is produced to F . To prove that CF is equal and parallel to DA, we need an additional information which is :
(a) $\angle \mathrm{DAE}=\angle \mathrm{EFC}$
(b) $\mathrm{AE}=\mathrm{EF}$
(c) $\mathrm{DE}=\mathrm{EF}$
(d) $\angle \mathrm{ADE}=\angle \mathrm{ECF}$
35. D and E are the mid-points of the sides $A B$ and $A C$ of $\triangle A B C$ and O is any point on side $B C$. O is joined to A . If P and Q are the mid-points of OB and OC respectively, then DEQP is :
(a) a square
(b) a rectangle
(c) a rhombus
(d) a parallelogram
36. The figure formed by joining mid-points of the sides of a quadrilateral ABCD , taken in order, is a square only if :
(a) ABCD is a rhombus
(b) diagonals of ABCD are equal
(c) diagonals of ABCD are equal and perpendicular
(d) diagonals of ABCD are perpendicular.

B. Questions From CBSE Examination Papers

1. ABCD is a rhombus such that $\angle \mathrm{ACB}=40^{\circ}$, then $\angle \mathrm{ADC}$ is :
[T-II (2011)]
(a) 40°
(b) 45°
(c) 100°
(d) 60°
2. If the angles of a quadrilateral $A B C D$, taken in order, are in the ratio $3: 7: 6: 4$, then ABCD is a:
[T-II (2011)]
(a) rhombus
(b) kite
(c) parallelogram
(d) trapezium
3. Two adjacent angles of a rhombus are $3 x-40^{\circ}$ and $2 x+20^{\circ}$. The measurement of the greater angle is :
[T-II (2011)]
(a) 160°
(b) 100°
(c) 80°
(d) 120°
4.

ABCD is a parallelogram in which $\angle \mathrm{DAC}$ $=40^{\circ} ; \angle \mathrm{BAC}=30^{\circ} ; \angle \mathrm{DOC}=105^{\circ}$ then $\angle \mathrm{CDO}$ equals :
[T-II (2011)]
(a) 75°
(b) 70°
(c) 45°
(d) 85°
5. Angles of a quadrilateral are in the ratio $3: 6: 8$: 13. The largest angle is :
[T-II (2011)]
(a) 178°
(b) 90°
(c) 156°
(d) 36°
6. ABCD is a rhombus such that one of its diagonals is equal to its side. Then the angles of rhombus ABCD are :
[T-II (2011)]
(a) $45^{\circ}, 135^{\circ}, 45^{\circ}, 135^{\circ}$
(b) $100^{\circ}, 80^{\circ}, 100^{\circ}, 80^{\circ}$
(c) $120^{\circ}, 60^{\circ}, 120^{\circ}, 60^{\circ}$
(d) $60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}$
7. $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are midpoints of sides BC, CA and AB of $\triangle \mathrm{ABC}$. If perimeter of $\triangle \mathrm{ABC}$ is 12.8 cm , then perimeter of $\triangle \mathrm{DEF}$ is :
[T-II (2011)]
(a) 17 cm
(b) 38.4 cm (c
c) 25.6 cm
(d) 6.4 cm
8. In a quadrilateral three angles are in the ratio $3: 3: 1$ and one of the angles is 80°, then other angles are :
[T-II (2011)]
(a) $120^{\circ}, 120^{\circ}, 40^{\circ}$
(b) $100^{\circ}, 100^{\circ}, 80^{\circ}$
(c) $110^{\circ}, 110^{\circ}, 60^{\circ}$
(d) $90^{\circ}, 90^{\circ}, 30^{\circ}$
9. Two adjacent angles of a parallelogram are $(2 x+30)^{\circ}$ and $(3 x+30)^{\circ}$. The value of x is :
[T-II (2011)]
(a) 30°
(b) 60°
(c) 24°
(d) 36°
10. In a quadrilateral $\mathrm{ABCD}, \mathrm{AB}=\mathrm{BC}$ and $\mathrm{CD}=\mathrm{DA}$, then the quadrilateral is a : [T-II (2011)]
(a) parallelogram
(b) rhombus
(c) kite
(d) trapezium
11. In a parallelogram $\mathrm{ABCD}, \angle \mathrm{A}=60^{\circ}$, then $\angle \mathrm{D}$ is equal to :
[T-II (2011)]
(a) 110°
(b) 140°
(c) 120°
(d) 130°
12. In the figure, ABCD is a parallelogram. If $\angle \mathrm{DAB}$ $=60^{\circ}$ and $\angle \mathrm{DBC}=80^{\circ}$, then $\angle \mathrm{CDB}$ is :
[T-II (2011)]

(a) 40°
(b) 80°
(c) 60°
(d) 20°
13. In the figure, ABCD is a parallelogram. If $\angle \mathrm{B}=100^{\circ}$, then $(\angle \mathrm{A}+\angle \mathrm{C})$ is equal to :
[T-II (2011)]

(a) 360°
(b) 200°
(c) 180°
(d) 160°
14. All the angles of a convex quadrilateral are congruent. However, not all its sides are congruent. What type of quadrilateral is it? [T-II (2011)]
(a) parallelogram
(b) square
(c) rectangle
(d) trapezium
15. ABCD is a quadrilateral and AP and DP are bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{D}$. The value of x is :
[T-II (2011)]

(a) 60°
(b) 85°
(c) 95°
(d) 100°
16. In a $\triangle P Q R$, right angled at $Q, P Q=24 \mathrm{~cm}$ and $\mathrm{QR}=7 \mathrm{~cm} . \mathrm{S}$ is the mid point of PR . Then RS is :
[T-II (2011)]

(a) 3.5 cm
(b) 12 cm (c) 25 cm
(d) 12.5 cm

ACBSE Coaching for OCatinematiss and Sclence

17. If $\angle \mathrm{C}=\angle \mathrm{D}=50^{\circ}$, then four points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$:
[T-II (2011)]

(a) are concyclic
(b) do not lie on same circle
(c) are collinear
(d) $\mathrm{A}, \mathrm{B}, \mathrm{D}$ and $\mathrm{A}, \mathrm{B}, \mathrm{C}$ lie on different circles
18. In parallelogram ABCD , if $\angle \mathrm{A}=2 x+15^{\circ}, \angle \mathrm{B}$ $=3 x-25^{\circ}$, then value of x is : \quad [T-II (2011)]
(a) 91°
(b) 89°
(c) 34°
(d) 38°
19. Three angles of a quadrilateral are $70^{\circ}, 120^{\circ}$ and 65°. The fourth angle of the quadrilateral is :
[T-II (2011)]
(a) 95°
(b) 75°
(c) 105°
(d) 90°
20. If PQRS is a parallelogram, then $\angle \mathrm{Q}-\angle \mathrm{S}$ is equal to :
[T-II (2011)]
(a) 90°
(b) 120°
(c) 180°
(d) 0°
21. Which of the following is not true for a parallelogram?
[T-II (2011)]
(a) opposite sides are equal
(b) opposite angles are equal
(c) opposite angles are bisected by diagonals
(d) diagonals bisect each other
22. If $A P B$ and $C Q D$ are parallel lines and a transversal PQ cut them at P and Q , then the bisectors of angles APQ, BPQ, CQP and PQD form a [T-II (2011)]
(a) rectangle
(b) rhombus
(c) square
(d) any other parallelogram
23. ABCD is a rhombus such that $\angle \mathrm{ACB}=40^{\circ}$, then $\angle \mathrm{ADB}$ is :
[T-II (2011)]
(a) 40°
(b) 45°
(c) 50°
(d) 60°
24. The figure obtained by joining mid-points of adjacent sides of a rectangle of sides 8 cm and 6 cm is :
[T-II (2011)]
(a) a rectangle of area $24 \mathrm{~cm}^{2}$
(b) a square of area $25 \mathrm{~cm}^{2}$
(c) a trapezium of area $24 \mathrm{~cm}^{2}$
(d) a rhombus of area $24 \mathrm{~cm}^{2}$
25. If the diagonals AC and BD of a quadrilateral ABCD bisect each other, then ABCD is a :
[T-II (2011)]
(a) parallelogram
(b) rectangle
(c) rhombus
(d) trapezium
26. The diagonals of a parallelogram PQRS intersect at O. If $\angle \mathrm{QOR}=90^{\circ}$ and $\angle \mathrm{QSR}=50^{\circ}$, then $\angle \mathrm{ORS}$ is :
[T-II (2011)]
(a) 90°
(b) 40°
(c) 70°
(d) 50°
27. If in a quadrilateral $\mathrm{ABCD}, \angle \mathrm{A}=90^{\circ}$ and $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$, then ABCD is a
[T-II (2011)]
(a) a parallelogram
(b) rectangle
(c) square
(d) rhombus
28. In qudrilateral PQRS , if $\angle \mathrm{P}=60^{\circ}$ and $\angle \mathrm{Q}: \angle \mathrm{R}$ $: \angle \mathrm{S}=2: 3: 7$, then $\angle \mathrm{S}$ is :
[T-II (2011)]
(a) 175°
(b) 135°
(c) 150°
(d) 210°
29. A quadrilateral whose diagonals are equal and bisect each other at right angles is a :
[T-II (2011)]
(a) rhombus
(b) square
(c) trapezium
(d) rectangle
30. In a parallelogram ABCD , if $\angle \mathrm{A}=75^{\circ}$, then $\angle \mathrm{B}$ is :
[T-II (2011)]
(a) 75°
(b) 105°
(c) 15°
(d) 95°
31. In the given figure, ABCD is a rhombus in which diagonals AC and BD intersect at O . Then $\angle \mathrm{AOB}$ is :
[T-II (2011)]

(a) 60°
(b) 80°
(c) 90°
(d) 45°
32. The diagonals AC and BD of a parallelogram ABCD inntersect each other at the point O. If $\angle \mathrm{DAC}=32^{\circ}, \angle \mathrm{AOB}=70^{\circ}$, then $\angle \mathrm{DBC}$ is equal to :
[T-II (2011)]
(a) 24°
(b) 88°
(c) 38°
(d) 32°
33. Which of the following is not a parallelogram?
[T-II (2011)]
(a) rhombus
(b) rectangle
(c) trapezium
(d) square
34. Two angles of a quadrilateral are 50° and 80° and other two angles are in the ratio $8: 15$, then the remaining two angles are :
[T-II (2011)]
(a) $140^{\circ}, 90^{\circ}$
(b) $100^{\circ}, 130^{\circ}$
(c) $80^{\circ}, 150^{\circ}$
(d) $70^{\circ}, 160^{\circ}$
35. In a quadrilateral ABCD , if $\angle \mathrm{A}=80^{\circ}, \angle \mathrm{B}=70^{\circ}$, $\angle \mathrm{C}=130^{\circ}$, then $\angle \mathrm{D}$ is :
[T-II (2011)]
(a) 80°
(b) 70°
(c) 130°
(d) 150°
36. In an equilateral triangle $A B C, D$ and E are the mid points of sides $A B$ and $A C$ respectively. Then length of DE is :
[T-II (2011)]
(a) not possible to find
(b) 3 cm
(c) $\frac{1}{2} \mathrm{BC}$
(d) $\frac{3}{2} \mathrm{BC}$

 for OGGthematics and Science

37. In a quadrilateral ABCD , diagonals bisect each other at right angles. Also, $\mathrm{AB}=\mathrm{BC}=\mathrm{AD}$ $=6 \mathrm{~cm}$, then length of CD is :
[T-II (2011)]
(a) 3 cm
(b) 6 cm
(c) $6 \sqrt{2}$
(d) 12 cm
38. In the figure, PQRS is a parallelogram in which $\angle \mathrm{PSR}=125^{\circ}, \angle \mathrm{RQT}$ is equal to : [T-II (2011)]

(a) 75°
(b) 65°
(c) 55°
(d) 125°
39. Two consecutive angles of a parallelogram are in
the ratio $1: 3$, then the smaller angle is :
[T-II (2011)]
(a) 50°
(b) 90°
(c) 60°
(d) 45°
40. In the figure, $P Q R S$ is a rectangle. If $\angle R P Q$ $=30^{\circ}$, then the value of $(x+y)$ is: [T-II (2011)]

(a) 90°
(b) 120°
(c) 150°
(d) 180°
41. The diagonals of a rhombus are 12 cm and 16 cm . The length of the side of the rhombus is :
[T-II (2011)]
(a) 10 cm
(b) 12 cm
(c) 16 cm
(d) 8 cm

SHORT ANSWER TYPE QUESTIONS

[2 Marks]

A. Important Questions

1. Can $95^{\circ}, 70^{\circ}, 110^{\circ}$ and 80° be the angles of a quadrilateral ? Why or why not?
2. Three angles of a quadrilateral are equal. Is it a parallelogram?
3. Diagonals of a parallelogram are perpendicular to each other. Is this statement true ? Give reason for your answer.
4. Diagonals of a quadrilateral PQRS bisect each other. If $\angle \mathrm{P}=35^{\circ}$, find $\angle \mathrm{Q}$.
5. The angles of a quadrilateral are in the ratio $2: 4: 5: 7$. Find the angles.
6. The lengths of the diagonals of a rhombus are 24 cm and 18 cm . Find the length of each side of
the rhombus.
7. Diagonals AC and BD of a parallelogram ABCD intersect each other at O. If $\mathrm{OA}=3 \mathrm{~cm}$ and $\mathrm{OD}=2 \mathrm{~cm}$, find the lengths of AC and BD .
8. Can all the angles of a quadrilateral be acute ? Give reason for your answer.
9. In $\triangle A B C, P, Q$ and R are mid-points of sides $B C$, $C A$ and $A B$ respectively. If $A C=21 \mathrm{~cm}$, $\mathrm{BC}=29 \mathrm{~cm}$ and $\mathrm{AB}=30 \mathrm{~cm}$, find the perimeter of the quadrilateral ARPQ.
10. Diagonals of a quadrilateral ABCD bisect each other. If $\angle A=35^{\circ}$, then $\angle B=145^{\circ}$. Is it true ? Justify your answer.

B. Questions From CBSE Examination Papers

1. The sides BA and DC of quadrilateral ABCD are produced as shown in the figure.
Prove that $x+y=a+b$.
[T-II (2011)]

2. In the figure, ABCD is a square. A line segment DX cuts the side BC at X and the diagonal AC at O such that $\angle \mathrm{COD}=105^{\circ}$. Find the value of x.
[T-II (2011)]

3. In $\triangle A B C, D$ and E are mid points of $A B$ and $A C$. If $\mathrm{AD}=3.5 \mathrm{~cm} ; \mathrm{AE}=4 \mathrm{~cm} ; \mathrm{DE}=2.5 \mathrm{~cm}$, find the perimeter of $\triangle \mathrm{ABC}$.
[T-II (2011)]
4. ABCD is a rhombus in which $\mathrm{AC}=16 \mathrm{~cm}$; $B C=10 \mathrm{~cm}$. Find the length of the diagonal BD.
[T-II (2011)]
5. In $\triangle \mathrm{ABC}, \mathrm{AB}=12 \mathrm{~cm}, \mathrm{BC}=15 \mathrm{~cm}$ and $A C=7 \mathrm{~cm}$. Find the perimeter of the triangle formed by joining the mid points of the sides of the triangle.
[T-II (2011)]
6. ABCD is a rhombus. $\mathrm{AO}=5 \mathrm{~cm}$. Area of the rhombus is 25 sq cm . Find the length of BD.
[T-II (2011)]

Jsurill $A C B S E$ Coaching for OLGAThematies and Science

7. ABCD is a parallelogram. L and M are points on AB and DC respectively such that $\mathrm{AL}=\mathrm{MC}$. Prove that LM and BD bisect each other. [T-II (2011)]

8. l, m and n are three parallel lines intersected by transversal p and q such that l, m and n cut equal intercepts AB and BC on p. Show that l, m, n cut off equal intercepts DE and EF on q also.
[T-II (2011)]

9. In the figure, ABCD is a parallelogram. Find the measure of the angles x, y.
[T-II (2011)]

10. In the figure, ABCD is a parallelogram. Compute $\angle \mathrm{DCA}, \angle \mathrm{ACB}$ and $\angle \mathrm{ADC}$, given $\angle \mathrm{DAC}=60^{\circ}$ and $\angle \mathrm{ABC}=75^{\circ}$.
[T-II (2011)]

11. Prove that if the diagonals of a quadrilateral bisect each other, then it is a parallelogram. [T-II (2011)]
12. In the figure, ABCD is a parallelogram. BA is produced to E such that $\mathrm{AE}=\mathrm{AD}$. ED is produced to meet BC produced at F . Show that $\mathrm{CD}=\mathrm{CF}$.
[T-II (2011)]

13. In $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}, \mathrm{D}$ and E are the mid-points of the sides $A B$ and $A C$ respectively. If $\mathrm{AB}=6 \mathrm{~cm}$ and $\mathrm{AC}=10 \mathrm{~cm}$, then find the length of DE.
[T-II (2011)]
14. Angles of a quadrilateral are in the ratio $3: 4: 5: 6$. Find the angles of the quadrilateral.
[T-II (2011)]
15. In $\triangle \mathrm{ABC}, \mathrm{AD}$ is the median. A line through D and parallel to $A B$, meets $A C$ at E. Prove that $B E$ is the median of triangle ABC .
[T-II (2011)]
16. ABCD is parallelogram. The angle bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{D}$ intersect at O . Find the measures of $\angle A O D$.
[T-II (2011)]
17. In the given figure, PQRS is a parallelogram and line segments PA and RB bisect the angles P and R respectively. Show that $\mathrm{PA} \| R B$. [T-II (2011)]

18. In $\triangle \mathrm{ABC}, \mathrm{D}, \mathrm{E}$ and F are mid points of sides AB , $B C$ and $C A$. Show that $\triangle A B C$ is divided into four congruent triangles by joining D, E and F .
[T-II (2011)]
19. $A B C D$ is a parallelogram and $A P$ and $C Q$ are perpendiculars from vertices A and C on diagonal BD. Show that :
[T-II (2011)]
(i) $\triangle \mathrm{APB} \cong \triangle \mathrm{CQD}$
(ii) $\mathrm{AP}=\mathrm{CQ}$

20. If angles of a quadrilateral are in the ratio $1: 2$: $3: 4$, find measures of all the angles of the quadrilateral.
[T-II (2011)]
21. Two opposite angles of a parallelogram are $(3 x-2)^{\circ}$ and $(63-2 x)^{\circ}$. Find all the angles of the parallelogram.
[T-II (2011)]
22. Prove that diagonal of a parallelogram divides it into two congruent triangles.
[T-II (2011)]
23. $A B C D$ is a quadrilateral in which P, Q, R and S are mid points of $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA respectively. Show that PQRS is a parallelogram. [T-II (2011)]

JSIITIL ACBSE Coaching for QGathematics and Science

24. If PQRS is a rhombus with $\angle \mathrm{PQR}=55^{\circ}$, find \angle PRS.
[T-II (2011)]
25. D and E are the mid-points of sides $A B$ and $A C$ respectively of triangle $A B C$. If the perimeter of $\Delta \mathrm{ABC}=35 \mathrm{~cm}$, find the perimeter of $\triangle \mathrm{ADE}$.
[T-II (2011)]
26. The vertices of a parallelogram lie on a circle. Prove that its diagonals are equal. [T-II (2011)]
27. The angles of a quadrilateral are in the ratio $3: 5: 7: 9$. Find the angles of the quadrilateral.
[T-II (2011)]
28. In the figure, it is given that BDEF and FDCE are parallelograms. Show that $\mathrm{BD}=\mathrm{CD}$. [T-II (2011)]

29. In a cyclic quadrilateral PQRS , if $\angle \mathrm{P}-\angle \mathrm{R}=50^{\circ}$, then find the measure of $\angle \mathrm{P}$ and $\angle \mathrm{R}$.
[T-II (2011)]
30. In $\triangle \mathrm{ABC}, \mathrm{AD}$ is the median and $\mathrm{DE} \| \mathrm{AB}$. Prove that BE is another median.
[T-II (2011)]

31. Show that diagonals of a square are equal and bisect each other at right angles. [T-II (2011)]
32. ABC is a triangle right angled at C . A line through the mid point M of hypotenuse AB and parallel to BC intersects AC at D. Show that [T-II (2011)]
(i) D is the mid point of AC
(ii) $\mathrm{MD} \perp \mathrm{AC}$
33. The two opposite angles of a parallelogram are $(3 x-10)^{\circ}$ and $(2 x+35)^{\circ}$. Find the measure of all the four angles of the parallelogram. [T-II (2011)]
34. In $\triangle \mathrm{ABC}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\mathrm{AC}=7 \mathrm{~cm}$. If D and E are respectively mid-points of $A B$ and BC , determine the length of DE . Give reasons.
[T-II (2011)]
35. In the figure, it is given that $B D E F$ and FDCE are parallelograms. If $\mathrm{BD}=4 \mathrm{~cm}$, determine CD .
[T-II (2011)]

36. In a parallelogram PQRS , if $\angle \mathrm{P}=(3 x-5)^{\circ}, \angle \mathrm{Q}$ $=(2 x+15)^{\circ}$, find the value of x. [T-II (2011)]
37. In the figure, PQRS is a parallelogram. Find the values of x and y.
[T-II (2011)]

38. In the figure, $\angle \mathrm{AOB}=90^{\circ}, \mathrm{AC}=\mathrm{BC}$, $\mathrm{OA}=12 \mathrm{~cm}$ and $\mathrm{OC}=6.5 \mathrm{~cm}$. Find the measure of OB .
[T-II (2011)]

39. The angles of a quadrilateral are in the ratio $3: 5: 9: 13$. Find all the angles of the quadrilateral.
[T-II (2011)]
40. The angle between the two altitudes of a parallelogram through the vertex of an obtuse angle is 50°. Find the angles of the parallelogram.
[T-II (2011)]
41. In a parallelogram, show that the angle bisectors of two adjacent angles intersect at right angle.
[T-II (2011)]
42. Find the measure of each angle of a parallelogram, if one of its angles is 30° less than twice the smaller angle.
[T-II (2011)]
43. ABCD is a rhombus with $\angle \mathrm{ABC}=58^{\circ}$. Find $\angle A C D$.
[T-II (2011)]

A. Important Questions

1. ABCD is a rhombus in which altitude from D on side $A B$ bisects $A B$. Find the angles of the rhombus.
2. In a parallelogram show that the angle bisectors of two adjacent angles intersect at right angles.
3. One angle of a quadrilateral is 108° and the remaining three angles are equal. Find each of the three equal angles.
4. E and F are points on diagonal AC of a parallelogram $A B C D$ such that $A E=C F$. Show that BFDE is a parallelogram.
5. D, E and F are the mid-points of the sides BC, CA and AB respectively of an equilateral $\triangle \mathrm{ABC}$.
Show that $\triangle \mathrm{DEF}$ is also an equilateral triangle.
6. In a triangle ABC , median AD is produced to X such that $A D=D X$. Prove that $A B X C$ is a parallelogram.
7. In the figure, through A, B and C lines $R Q, P Q$ and PR have been drawn respectively parallel to sides $B C, C A$ and $A B$ of a $\triangle A B C$. Show that $\mathrm{BC}=\frac{1}{2} \mathrm{QR}$.

8. Show that the quadrilateral formed by joining the mid-points of sides of a square is also a square.
9. E is the mid-point of the side AD of trapezium ABCD with $\mathrm{AB} \| \mathrm{DC}$. A line through E drawn parallel to $A B$ intersects $B C$ at F. Show that F is the mid-point of BC.
10. If one angle of a parallelogram is a right angle, it is a rectangle. Prove.
11. In the figure, P is the mid-point of side $B C$ of a parallelogram ABCD such that $\angle \mathrm{BAP}=\angle \mathrm{DAP}$. Prove that $A D=2 C D$.

B. Questions From CBSE Examination Papers

1. Show that bisectors of the angles of a parallelogram form a rectangle.
[T-II (2011)]
2. Prove that a parallelogram is a rhombus if its diagonals bisect at right angles.
[T-II (2011)]
3. Two parallel lines l and m are intersected by a transversal p. Show that the quadrilateral formed by the bisectors of interior angles is a rectangle.
[T-II (2011)]

4. In a parallelogram ABCD , bisector of $\angle \mathrm{A}$, also bisects BC at X . Prove that $\mathrm{AD}=2 \mathrm{AB}$.
[T-II (2011)]

5. AD is the median of $\triangle \mathrm{ABC}$. E is the midpoint of AD. BE produced meets AC at F. Show that $\mathrm{AF}=\frac{1}{3} \mathrm{AC}$.
[T-II (2011)]

Cserl ACBSTE Coaching for Qhathematics and Science

6. Prove that line segments joining the mid points of opposite sides of any quadrilateral bisect each other.
[T-II (2011)]
7. Prove that the diagonals of a rectangle are equal.
[T-II (2011)]
8. Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.
[T-II (2011)]
9. In a quadrilateral $\mathrm{ABCD}, \mathrm{AO}$ and BO are the bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{B}$ respectively. Prove that $\angle \mathrm{AOB}=\frac{1}{2}(\angle \mathrm{C}+\angle \mathrm{D})$
[T-II (2011)]
10. In the figure, ABCD is a square, if $\angle \mathrm{PQR}=90^{\circ}$ and $\mathrm{PB}=\mathrm{QC}=\mathrm{DR}$, prove that $\mathrm{QB}=\mathrm{RC}, \mathrm{PQ}$ $=\mathrm{QR}, \angle \mathrm{QPR}=45^{\circ}$.
[T-II (2011)]

11. In the figure, points A and B are on the same side of a line $m, \mathrm{AD} \perp m$ and $\mathrm{BE} \perp m$ and meet m at D and E respectively. If C is the mid point of $A B$, prove that $\mathrm{CD}=\mathrm{CE}$.
[T-II (2011)]

12. $A B C D$ is a parallelogram in which X and Y are the mid-points of $A B$ and $C D$. AY and $D X$ are joined which intersect each other at P. BY and CX are also joined which intersect each other at Q . Show that PXQY is a parallelogram. [T-II (2011)]
13. ABCD is a rectangle in which diagonal AC bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{C}$. Show that
[T-II (2011)]
(i) ABCD is a square
(ii) Diagonal BD bisects $\angle \mathrm{B}$ as well as $\angle \mathrm{D}$
14. Diagonal $A C$ of a parallelogram bisects $\angle A$. Show that (i) it bisects $\angle \mathrm{C}$ also (ii) ABCD is a rhombus
[T-II (2011)]
15. Show that the diagonals of a rhombus are perpendicular to each other.
[T-II (2011)]
16. Show that a diagonal of a parallelogram divides it into two congruent triangles and hence prove that the opposite sides of a parallelogram are equal.
[T-II (2011)]
17. $A B C D$ is parallelogram. On diagonal $B D$ are points P and Q such that $\mathrm{DP}=\mathrm{BQ}$. Show that APCQ is a parallelogram.
[T-II (2011)]

18. In the figure, diagonal BD of parallelogram ABCD bisects $\angle \mathrm{B}$. Show that it bisects $\angle \mathrm{D}$ also.
[T-II (2011)]

19. PQRS is a parallelogram and $\angle \mathrm{SPQ}=60^{\circ}$. If the bisectors of $\angle \mathrm{P}$ and $\angle \mathrm{Q}$ meet at point A on RS, prove that A is mid-point of RS. [T-II (2011)]
20. Prove that quadrilateral formed by bisectors of the angles of a parallelogram is a rectangle.
[T-II (2011)]

21. Show that the line segments joining the mid-points of opposite sides of quadrilateral bisect each other.
[T-II (2011)]
22. In the figure, $P S$ and RT are medians of $\triangle P Q R$ and $\mathrm{SM} \|$ RT. Prove that $\mathrm{QM}=\frac{1}{4} \mathrm{PQ}$.
[T-II (2011)]

Jsulil fllanal ACBSE Coaching for OCathematics and Science

23. In a parallelogram PQRS , the bisectors of adjacent angles R and S intersect each other at the point O . Prove that $\angle \mathrm{ROS}=90^{\circ}$.
[T-II (2011)]
24. In the figure, PQRS is a square. M is the midpoint of PQ and $\mathrm{AB} \perp \mathrm{RM}$. Prove that $\mathrm{RA}=\mathrm{RB}$.
[T-II (2011)]

25. $A B C D$ is a rhombus. Show that diagonal $A C$ bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{C}$ and diagonal BD bisects $\angle \mathrm{B}$ as well as $\angle \mathrm{D}$.
[T-II (2011)]
26. Prove that the bisectors of any two consecutive angles of a parallelogram intersect at right angles.
[T-II (2011)]
27. In the figure, ABCD is a trapezium in which $A B \| D C . E$ is the mid point of $A D$ and F is a point of $B C$ such that $E F \| D C$. Prove that F is the mid point of $B C$.
[T-II (2011)]

28. In the figure, DE and BF are perpendiculars to the diagonal AC of a parallelogram ABCD. Prove that $\mathrm{DE}=\mathrm{BF}$.
[T-II (2011)]

29. In the figure, PQRS is a parallelogram in which PQ is produced to T such that $\mathrm{QT}=\mathrm{PQ}$. Prove that ST bisects RQ.
[T-II (2011)]

LONG ANSWER TYPE QUESTIONS

A. Important Questions

1. In the figure, ABC is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}, \mathrm{CD} \| \mathrm{AB}$ and AD is bisectors of exterior $\angle \mathrm{CAE}$ of $\triangle \mathrm{ABC}$. Prove that $\angle \mathrm{CAD}=\angle \mathrm{BCA}$ and ABCD is a parallelogram.

2. $P Q$ and $R S$ are two equal and parallel line segments. Any point M not lying on PQ or RS is joined to Q and S and lines through P parallel to QM and through R parallel to SM meet at N.

Prove that line segments MN and PQ are equal and parallel to each other.
3. A diagonal of a parallelogram bisects one of its angles. Prove that it will bisect its opposite angle also.
4. Prove that the line joining the mid-points of the diagonals of a trapezium is parallel to the parallel sides of the trapezium.
5. ABCD is a rectangle in which diagonal BD bisects $\angle B$. Show that $A B C D$ is a square.
6. If $A B C D$ is a trapezium in which $A B \| C D$ and $\mathrm{AD}=\mathrm{BC}$, prove that $\angle \mathrm{A}=\angle \mathrm{B}$.
7. $\mathrm{P}, \mathrm{Q}, \mathrm{R}$, and S are respectively the mid-points of the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA of a quadrilateral $A B C D$ in which $A D=B C$. Prove that $P Q R S$ is a rhombus.

B. Questions From CBSE Examination Papers

1. In a parallelogram $\mathrm{ABCD}, \mathrm{E}$ and F are the midpoints of sides AB and CD respectively. Show that the line segment AF and EC trisects the diagonal BD .
[T-II (2011)]

2. ABC is a triangle right angled at C . A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that [T-II (2011)]
(i) $\mathrm{MD} \perp \mathrm{AC}$
(ii) D is mid-point of AC
(iii) $\mathrm{MC}=\mathrm{MA}=\frac{1}{2} \mathrm{AB}$
3. Prove that a line segment joining the mid-points of any two sides of a triangle is parallel and half of its third side.
[T-II (2011)]
4. Prove that a line passing through mid-point of one non parallel side of a trapezium parallel to parallel sides bisect the other non parallel side.
[T-II (2011)]
5. In the figure, ABCD is a parallelogram. E is the mid-point of BC . DE and AB when produced meet at F . Prove that $\mathrm{AF}=2 \mathrm{AB}$.
[T-II (2011)]

6. If X, Y and Z are the mid-points of sides BC, CA and AB of $\triangle \mathrm{ABC}$ respectively, prove that AZXY is a parallelogram.
[T-II (2011)]
7. $A B C D$ is a trapezium in which $A B \| C D$ and $A D$ = BC. Show that
[T-II (2011)]
(i) $\angle \mathrm{A}=\angle \mathrm{B}$
(ii) $\angle \mathrm{C}=\angle \mathrm{D}$
(iii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}$
(iv) Diagonal $\mathrm{AC}=$ diagonal BD

8. ABCD is a parallelogram in which $\angle \mathrm{A}=60^{\circ}$. If
bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{B}$ meet at P , prove that AD $=\mathrm{DP}, \mathrm{PC}=\mathrm{BC}, \mathrm{DC}=2 \mathrm{AD}$.
[T-II (2011)]

9. Show that the quadrilateral formed by joining the mid-points of the sides of a rectangle is a rhombus.
[T-II (2011)]
10. Prove that in a triangle, the line segment joining the mid-points of any two sides is parallel to third side and is half of it.
Using the above, if $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are the mid-points of sides $B C, A C$ and $A B$ of $\triangle A B C$ respectively and if $\mathrm{PQ}=2.5 \mathrm{~cm}, \mathrm{QR}=3 \mathrm{~cm}, \mathrm{RP}=3.5 \mathrm{~cm}$, find the lengths of $A B, B C$ and $C A$.
[T-II (2011)]
11. If $\triangle \mathrm{PQR}$ and $\triangle \mathrm{LMN}$ be two triangles given in such a way that $\mathrm{PQ} \| \mathrm{LM}, \mathrm{PQ}=\mathrm{LM}, \mathrm{QR}=\mathrm{MN}$ and $\mathrm{QR} \| \mathrm{MN}$, then show that $\mathrm{PR} \| \mathrm{LN}$ and PR = LN.
[T-II (2011)]

12. $A B C D$ is a square and on the side $D C$, an equilateral triangle is constructed. Prove that
[T-II (2011)]
(i) $\mathrm{AE}=\mathrm{BE}$ and
(ii) $\angle \mathrm{DAE}=15^{\circ}$

13. The diagonals of a quadrilateral $A B C D$ are perpendicular, show that quadrilateral formed by joining the mid-points of its sides, is rectangle.
[T-II (2011)]
