JSUNIL TUTORIAL

ACBSE Coaching for Mathematics and Science

1. In the adjoining figure, *ABCD* is a cyclic quadrilateral in which $\angle B = 55^{\circ}$ and $\angle C = 80^{\circ}$. Find $\angle A$ and $\angle D$.

2. ABCD is a trapezium with AB ||DC| inscribed in a circle. If $\angle A = 75^{\circ}$, find all the other angles of the trapezium.

3. Side *BC* of a cyclic quadrilateral *ABCD* has been produced to *E*. If $\angle A = 82^{\circ}$, show that $\angle DCE = 82^{\circ}$.

4. In the given figure, AOB is a diameter of a circle with centre O, and $\angle BAC = 40^{\circ}$. ABCD is a cyclic quadrilateral. Find $\angle ADC$.

5. Prove that any cyclic parallelogram is a rectangle.

Hint. Let ABCD be a cyclic parallelogram.

Then
$$\angle A = \angle C$$
 and $\angle A + \angle C = 180^{\circ}$.

$$\therefore \angle A = \angle C = 90^{\circ}.$$

6. In the adjoining figure, *ABCD* is a cyclic quadrilateral in which *AB* is a diameter. If $\angle ADC = 125^{\circ}$, find $\angle BAC$.

7. ABCD is a cyclic quadrilateral in which AB ||DC| and AB is a diameter. If $\angle BAC = 35^{\circ}$, find $\angle ADC$ and $\angle DAC$.

SE Coaching for Mathematics and Science

8 . ABCD is a trapezium inscribed in a circle with centre O. If $AB \mid\mid DC$ and AC is joined, show that

- (i) $\angle ACD = \angle CAB$
- (ii) $m(\widehat{AD}) = m(\widehat{BC})$

Hint. $m(\widehat{AD}) = \angle AOD = 2\angle ACD$ and $m(\widehat{BC}) = \angle BOC = 2\angle BAC$.

9. In the adjoining figure, \triangle ABC is inscribed in a circle with centre O and BC is a diameter. If \angle BCA = 48°, find \angle ABC.

ASSESSED BY SERVING TO BE ASSESSED.

10. In the given figure, O is the centre of a circle and chord AC =chord AB. Find $\angle BAC$.

11. In the figure, AOB is a diameter of a circle with centre O. Points C and D are taken on the circle such that $\angle CAB = 50^{\circ}$ and $\angle ABD = 40^{\circ}$. Find \angle CAD and \angle CBD.

12. AB is a diameter of a circle with centre O, $m(\widehat{AC}) = 30^{\circ}$ and $m(\widehat{CD}) = 70^{\circ}$; OC, OD, BC and BD are joined. Find

- (ii) ∠ CBD
- (iii) ∠ AOC
- (iv) ∠ ABC
- (v) ∠ BOD

13. In the adjoining figure, two circles intersect at P and Q, AP and PB are the diameters. Show that AQB is a straight line.

Hint. Join PQ. Now $\angle AQP = 90^{\circ}$ and $\angle BQP = 90^{\circ}$. A) is a cherd of a circle with centre O and b a d @

CP and cFf