## JSUNIL TUTORIAL , SAMASTIPUR, BIHAR 

## Derivation or Proof-of-Mirror formula(X) physics:

Mirror formula is the relationship between object distance (u), image distance (v) and focal length.

$$
1 / v+1 / u=1 / f
$$

In $\triangle A B C$ and $A^{\prime} B^{\prime} C$
$\angle A=\angle A^{\prime}=90^{\circ}$
$<\mathrm{C}=<\mathrm{C}$ ( vert. opp. <s]
$\Delta A B C \sim \Delta A^{\prime} B^{\prime} C$ [AA similarity]
AB /A'B' = AC/A'C ----(I)
Similarly,
In $\triangle A B C$ and $A^{\prime} B^{\prime} C$
$\angle A=\angle A^{\prime}=90^{\circ}$
$<\mathrm{C}=<\mathrm{C}$ ( vert. opp. <s]
$\Delta A B C \sim \Delta A^{\prime} B^{\prime} C$ [AA similarity]
AB /A'B' = AC/A'C ----(1)
Similarly, $\ln \triangle \mathrm{FPE} \sim$ A'B'F $^{\prime}$
EP $/ A^{\prime} B^{\prime}=P F / A^{\prime} F$
AB $/ A^{\prime} B^{\prime}=P F / A^{\prime} F \quad[A B=E P]$----(II)
From (i) \&(ii)
$A C / A^{\prime} C=P F / A^{\prime} F$
$\Rightarrow A^{\prime} C / A C=A^{\prime} F / P F$
$\Rightarrow\left(C P-A^{\prime} P\right) /(A P-C P)=\left(A^{\prime} P-P F\right) / P F$
Now, $\mathrm{PF}=-\mathrm{f} ; \mathrm{CP}=2 \mathrm{PF}=-2 f$;
$A P=-u$; and $A^{\prime} P=-v$
Put these value in above relation:

# |JSUNIL TUTORIAL , SAMASTIPUR, BIHAR 

$[(-2 f)-(-v)] /(-u)-(-2 f)=\{(-v)-(-f)\} /(-f)$
$\Rightarrow \mathrm{uv}=\mathrm{fv}+\mathrm{uf}$
$\Rightarrow 1 / f=1 / u+1 / v$
Derivation or Proof-of- Lens formula(X) physics


Let $A B$ is an object placed between $f 1$ and $f 2$ of the convex lens. The image $A 1 B 1$ is formed beyond $2 F_{2}$ and is real and inverted.
$\mathrm{OA}=$ Object distance $=\mathrm{u} ; \mathrm{OA} 1=$ Image distance $=\mathrm{v} ; \mathrm{OF}_{2}=$ Focal length $=\mathrm{f}$
In $\triangle \mathrm{OAB}$ and $\triangle \mathrm{OA}_{1} \mathrm{~B}_{1}$ are similar
$\angle \mathrm{BAO}=\angle \mathrm{B}_{1} \mathrm{~A}_{1} \mathrm{O}=90^{\circ}$
$<\mathrm{AOB}=<\mathrm{A}_{1} \mathrm{OB}_{1}$ [vertically opp. $<$ s]
$\Delta \mathrm{OAB} \sim \Delta \mathrm{OA}_{1} \mathrm{~B}_{1}$
$\mathrm{A}_{1} \mathrm{~B}_{1} / \mathrm{AB}=\mathrm{OA}_{1} / \mathrm{OA}$
Similarly, $\triangle$ OCF $_{2} \sim \Delta F_{2} A_{1} B_{1}$
$\mathrm{A}_{1} \mathrm{~B}_{1} / \mathrm{OC}=\mathrm{F}_{2} \mathrm{~A}_{1} / \mathrm{OF}_{2}$
But we know that $O C=A B$
$\Rightarrow A_{1} B_{1} / A B=F_{2} A_{1} / O F_{2}$
From equation (i) and (ii), we get
$\mathrm{OA}_{1} / \mathrm{OA}=\mathrm{F}_{2} \mathrm{~A}_{1} / \mathrm{OF}_{2}$
$\mathrm{OA}_{1} / \mathrm{OA}=\left(\mathrm{OA}_{1}-\mathrm{OF}_{2}\right) / \mathrm{OF}_{2}$
$\mathrm{v} /-\mathrm{u}=(\mathrm{v}-\mathrm{u}) / \mathrm{f}$
$\mathrm{vf}=-\mathrm{u}(\mathrm{v}-\mathrm{f})$
$\mathrm{vf}=-\mathrm{uv}+u f$
Dividing equation (3) throughout by uvf
$1 / v-1 / u=1 / f$

# JSUNL TIT Oill <br> ACBSE Coaching for 9(athematics and Science 

Prove that while refraction through a rectangular glass slab the incident ray is parallel to the emergent ray


In triangle GBC,
$r 1+90-r 2=90[$ Angle sum properties of triangle ]
$r 1=r 2$.
Now refractive index of glass $=\sin i / \sin r 1=\sin e / \sin r 2 \ldots$
as $r 1=r 2$ from $(i)$
so $<i=<e$ iii

Now as the incident ray is extended till $E,<L D E$ should be equal to $<i$.
For, CF and DE, and transversal CD,$<\mathrm{BCF}=(90+\mathrm{e})$ and $<\mathrm{CDE}=(90+\mathrm{i})$
Since these are corresponding angle, CF will be parallel to DE.

## CBSE EXAM SPECIAL

