-

Paper: 05 Class-X-Math: Summative Assessment - I

Total marks of the paper: 90
Total time of the paper:
3.5 hrs

Questions:

1] The decimal expansion of the rational number $\frac{2^{3}}{2^{2} \times 5}$ will terminate after.
A. more than three decimal places
B. three decimal places
C. two decimal places
D. one decimal place

2] $n^{2}-1$ is divisible by 8 , if n is
A. an even integer
B. a natural number
C. an integer
D. an odd integer

3] If one of the zeroes of the quadratic polynomial $(K-1) x^{2}+1$ is 3 , then the value of k is
A. $\frac{-4}{9}$
B. $\frac{4}{9}$
C. $\frac{-8}{9}$
D. $\frac{8}{9}$

4] The lines representing the linear equations $2 x-y=3$ and
$4 x-y=5$:
A. intersect at exactly two points
B. are coincident
C. are parallel
D. intersect at a point

5] Construction of a cumulative frequency table is useful in determining
The:
A. all the above three measures
B. mode
C. mean
D. median

6] If $x=3 \sec ^{2} \theta-1, y=\tan ^{2} \theta-2$ then $x-3 y$ is equal to
A. 5
B. 4
C. 3
D. 8

7] If $\cos \theta+\cos ^{2} \theta=1$, the value of $\left(\sin ^{2} \theta+\sin ^{4} \theta\right)$ is
A. 2
B. -1
C. 0

Submitted by student /visitor Download from: http://jsuniltutorial.weebly.com/

2|Page
D. 1

8] If $\triangle A B C \sim \triangle R Q P, \angle A=80^{\circ}, \angle B=60^{\circ}$, the value of $\angle P$ is
[Marks:1]
A. 30°
B. 50°
C. 60°
D. 40°

9] Use Euclid's division algorithm to find H.C.F. of 870 and 225.
[Marks:2]
10] Solve $37 x+43 y=123,43 x+37 y=117$.
OR

$$
x+\frac{\frac{6}{y}}{y}=6,3 x-\frac{8}{y}=5
$$

[Marks:2]

11] α, β are the roots of the quadratic polynomial $p(x)=x^{2}-(k+6) x+2(2 k-1)$. Find the value of k, if $\alpha+\beta=\frac{1}{2} \alpha \beta$.
12] In fig., $A B \perp B C, D E \perp B C$. Prove that $\triangle A D E \sim \triangle G C F$.

[Marks:2]

13]
If cot $\theta=\frac{\overline{7}}{\overline{8}}$, find the value of $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$
[Marks:2]

14] Find the median class and the modal class for the following distribution.

C.I	$135-145$	$140-145$	$145-150$	$150-155$	$155-160$	$160-165$
F	4	7	11	6	7	5

[Marks:2]
${ }^{15]}$ Show that $5+\sqrt{2}$ is an irrational number.
OR
[Marks:3]
Prove that $\sqrt{n-1}+\sqrt{n+1}$ is an irrational number.
16] If α and β are the zeroes of the quadratic polynomial $f(x)=x^{2}-2 x+1$, find a quadratic polynomial whose
zeroes are $\frac{2 \alpha}{\beta}$ and $\frac{2 \beta}{\alpha}$.
17] If in a rectangle, the length is increased and breadth is reduced each by 2 metres, the area is reduced by 28 sq mtrs. If the length is reduced by 1 metre and breadth is increased by 2 metres, the area is increased by 33 sq mtrs. Find the length and breadth of the rectangle.
OR
A chemist has one solution which is 40% acid and a second which is 60% acid. How much of each should be mixed to make 10 litres of 50% acid solution.
18] For what values of a and b does the following pairs of linear equations have an infinite number of solutions:
[Marks:3] $2 x+3 y=7 ; a(x+y)-b(x-y)=3 a+b-2$

19]
In figure, $A y \| Q R, \frac{\mathrm{PQ}}{\mathrm{XQ}}=\frac{7}{3}$ and $\operatorname{Pr}=6.3 \mathrm{~cm}$. Find YR .

20] Prove that in any triangle the sum of the squares of any two sides is equal to twice the square of half of the third together with twice the square of the median, which bisect the third side.

21] $\frac{\cos \alpha}{\cos \beta}=m$ and $\frac{\cos \alpha}{\sin \beta}=n$, show that $\left(m^{2}+n^{2}\right) \cos ^{2} \beta=n^{2}$.
OR
[Marks:3]

Find the value of

$$
\frac{\sec \left(90^{\circ}-\theta\right) \cdot \operatorname{cosec} \theta-\tan \left(90^{\circ}-\theta\right) \cot \theta+\cos ^{2} 25^{\circ}+\cos ^{2} 65^{\circ}}{3 \tan 27^{\circ} \tan 63^{\circ}}
$$

22] In figure, $A B C$ is a triangle right angled at $B, A B=5 \mathrm{~cm}, \angle A C B=30^{\circ}$. Find the length of $B C$ and $A C$.

23] In the following distribution, if the mean of the distribution is 86 then the value of p is

Wages (in Rs.)	$50-$ 60	$60-$ 70	$70-$ 80	$80-$ 90	$90-$ 100	$100-110$
Number of workers	5	3	4	p	2	13

24] Find the modal age of 100 residents of a colony from the following data :

Age in yrs. (more than or equal to)	0	10	20	30	40	50	60	70
No. of Persons	100	90	75	50	28	15	5	0

25] A number of the form 15^{n} where $n \in N$ the set of natural numbers, can never end with a zero. Justify this statement.
[Marks:4]
26] Solve the equations $2 x-y+6=0$ and $4 x+5 y-16=0$ graphically. Also determine the coordinate of [Marks:4] the vertices of the triangle formed by these lines and the x-axis.
27] What must be subtracted from $x^{3}-6 x^{2}-15 x+80$ so that the result is exactly divisible by $x^{2}+x-12$. [Marks:4]
28] In triangle $A B C, D$ is the mid-point of $B C$ and $A E \perp B C$. If $A C>A B$,
Show that $A B^{2}=A D^{2}-B C \times D E+\frac{B C^{2}}{4}$

4 | Page

OR
In a right angled triangle, the square of the hypotenuse is equal to the sum of squares of the other two sides.
29] In figure, $\triangle A B C$ is right angled at C. $D E \perp A B$. If $B C=12 \mathrm{~cm}$. $A D=3 \mathrm{~cm}$ and $D C=2 \mathrm{~cm}$, then prove that $\triangle A B C \sim \triangle A D E$ and hence find the lengths of $A E$ and $D E$.

30]
Prove that:
$\frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A$
OR

$$
\text { Prove that } \sqrt[{\sqrt{\frac{1+\sin A}{1-\sin A}}}]{\sqrt{1}}=\sec A+\tan A
$$

31]
If $\sec \theta+\tan \theta=p$, show that $\frac{p^{2}-1}{P^{2}+1}=\sin \theta$.
32] $\sqrt{\frac{\sec \theta-1}{\sec \theta+1}}+\sqrt{\frac{\sec \theta+1}{\sec \theta-1}}=2 \operatorname{cosec} \theta$
[Marks:4]

33]

Daily income (in Rs)	$100-120$	$120-140$	$140-160$	$160-180$	$180-200$
Number of workers	12	14	8	6	10

The following distribution gives the daily income of 50 workers of a factory.
Convert the
distribution above
to a less than
type cumulative
frequency distribution, and draw its ogive.
34] In the distribution given below 50% of the observations is more than 14.4. Find the values of x and y,
if the total frequency is 20.

Class Interval	$0-6$	$6-12$	$12-18$	$18-24$	$24-30$
Frequency	4	x	5	y	1

Solutions paper-4:

1] One decimal place
2] An odd integer
3] Since - 3 is the root of quadratic polynomial, we have

$$
(k-1)(-3) 2+1=0.9(k-1)=-1 \Rightarrow k-1=\frac{-1}{9} \Rightarrow k=1-\frac{1}{9}=\frac{8}{9}
$$

4]

$$
\frac{a_{1}}{a_{2}}=\frac{1}{2}, \frac{b_{1}}{b_{2}}=1
$$

5 | Page
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \Rightarrow$ inter sec t at point.
Median
6] $x=3 \sec 2 \theta-1, y=\tan 2 \theta^{\theta}-2$
$x-3 y=3 \sec 2^{\theta}-1-3 \tan 2^{\theta}+6$
$=3\left(\sec 2^{\theta}-\tan 2^{\theta}\right)+5$
$=3+5$
$=8$

$$
\begin{aligned}
\cos \theta+\cos 2 \theta & =1 \\
\sin 2 \theta+\sin 4 \theta & =\left(1-\cos ^{2} \theta\right) \\
& =\cos \theta+\cos 2 \theta \\
& =1
\end{aligned}
$$

8] $\triangle \mathrm{ABC} \sim \triangle \mathrm{RQP}$
$\angle A=\angle R=80^{\circ}$
$\angle \mathrm{B}=\angle \mathrm{Q}=60^{\circ}$
$\therefore \angle P=180-140=40^{\circ}$
9] Since, $870=225 \times 3+195$
$225=195 \times 1+30$
$195=30 \times 6+15$
$30=15 \times 2+0$
\therefore HCF $(870,225)=15$
10]

$37 x+43 y=123$	$37 x+43 y=123$
$\underset{(+)_{(+)}^{43 x}+37 y}{=} 117$	$(-) \quad 43 x+37 y=117$
$80 x+80 y=240$	$-6 x+6 y=6$
$\Rightarrow x+y=3$	$-x+y=1$
$\left.\begin{array}{l}x+y=3 \\ -x+y=1\end{array}\right\}$ Solving	$1, y=2$
OR	

We have $\left(x+\frac{6}{y}=6\right) 3 \Rightarrow 3 x+\frac{18}{y}=18$
Subtracting equation (1) from $3 x-\frac{8}{y}=5$, we get
$-\frac{26}{y}=-13 \Rightarrow y=2$
From equation (1), $x=3$
11] $\quad \alpha, \beta$ are roots of $x 2-(k+6) x+2(2 k-1)$
Now $\alpha+\beta=\frac{1}{2} \alpha \beta \Rightarrow k+6=\frac{1}{2} \times 2(2 k-1)$
$\alpha+\beta=k+6, \alpha \beta=2(2 k-1)$

$$
\Rightarrow k+\frac{k}{6}=72 k-1
$$

12]
From $\triangle A B C, \angle 1+\angle 3=90^{\circ}$
From $\triangle A D E, \angle 1+\angle 2=90^{\circ}$

$\angle_{1}+\angle_{3}=\angle_{1}+\angle_{2} \Rightarrow \angle_{3}=\angle_{2}$
\therefore In $\triangle A D E \sim \triangle G C F$ by AA rule as $\angle E=\angle F=90^{\circ}$ and $\angle 2=\angle 3$

$$
\begin{aligned}
& \operatorname{Cot} \theta=\frac{7}{8} \text { (given) } \\
& \frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}=\frac{1-\sin ^{2} \theta}{1-\cos ^{2} \theta} \\
& \frac{\cos ^{2} \theta}{\sin ^{2} \theta}
\end{aligned}
$$

$$
=\cot ^{2} \theta
$$

$$
=\frac{49}{64}
$$

C.I	f	c.f.
$135-140$	4	4
$140-145$	7	11
$145-150$	11	22
$150-155$	6	28
$155-160$	7	35
$160-165$	5	40

$\Rightarrow \frac{\mathrm{n}}{2}=20$
Here, $n=40$ is $145-150$
Also, since highest frequency is 11 , Modal class is 145-150

To prove $5+\sqrt{2}$ is irrational, let us assume $5+\sqrt{2}$ is rational.
\therefore We can find integers a and b where a, b are co-prime, $\mathrm{b} \neq 0$
Such that, $5+\sqrt{2}=\frac{a}{b} \Rightarrow \sqrt{2}=\frac{a}{b}-5$
Now a, b are integers, $\frac{a}{b}-5$ is rational.
$\Rightarrow \sqrt{2}$ is rational.
Which is a contradiction. So $5+\sqrt{2}$ is irrational.
OR
Let us assume to the contrary, that $\sqrt{7-1}+\sqrt{7+1}$ is a rational number.

$$
\begin{aligned}
& \Rightarrow(\sqrt{n-1}+\sqrt{n+1})^{2} \text { is rational. } \\
& \Rightarrow(n-1)+(n+1)-2(\sqrt{n-1} \times \sqrt{n+1}) \text { is rational } \\
& \Rightarrow 2 n+2 \sqrt{n^{2}-1} \text { is rational }
\end{aligned}
$$

But we know that $\sqrt{7^{2}-1}$ is an irrational number
So $2 n+2 \sqrt{7^{2}-1}$ is also an irrational number
So our basic assumption that the given number is rational is wrong.
Hence, $\sqrt{17-1}+\sqrt{7+1}$ is an irrational number
Submitted by student /visitor Download from: http://jsuniltutorial.weebly.com/
$(x)=x 2-2 x+1$
Zeroes of $f(x)$ are α, β
Sum of zeroes $\alpha+\beta=2$ and $\alpha . \beta=1$
Now $\frac{2 \alpha}{\beta}+\frac{2 \beta}{\alpha}=2\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)=2\left(\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}\right)$

$$
=2 \frac{\left((\alpha+\beta)^{2}-2 \alpha \beta\right)}{\alpha \beta}=\frac{2 \times 2}{1}=4
$$

Also, $\frac{2 \alpha}{\beta} \times \frac{2 \beta}{\alpha}=4$
Required polynomial $=k(x 2-4 x+4)$, where k is any integer.
17] Let the length and breadth of the rectangle be x and y respectively.
So the original area of the rectangle=xy
According to question,
$(x+2)(y-2)=x y-28$
i.e. $x y-2 x+2 y-4=x y-28$
$2 x-2 y=24 \ldots$ (i)
Next, $(x-1)(y+2)=x y+33$
i.e. $x y+2 x-y-2=x y+33$
$2 x-y=35$..(ii)
Now we need to solve (i) and (ii)
From (ii) we get,
$y=2 x-35$
substituting this value in (i) we get,
$2 x-4 x+70=24$
$-2 x=-46$
$x=23$
substituting this value in (ii)
we get,
$\mathrm{y}=11$
So the length and breadth of the rectangle are 23 metres and 11 metres respectively.

Let 40% acids in the solution be x litres
Let 60% of other solution be y litres
Total Volume in the mixture $=x+y$
Given volume is 10 litres
$x+y=10--$-(i)
Also, $\frac{40}{100} x+\frac{60}{100} y=\frac{50}{100} \times 10$
So, $40 x+60 y=500$ or $2 x+3 y=25$...(ii)
Solving (i) and (ii) we get $x=y=5$ litres
18] The system has infinitely many solution

$$
\begin{align*}
& \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
\Rightarrow & \frac{2}{a-b}=\frac{3}{a+b}=\frac{7}{3 a+\frac{b}{(1)}-2}
\end{align*}
$$

Equating (1) and (2), we get $a=5 b$
Equating (2) and (3), we get $2 a-4 b=6$
On solving, we get $\mathrm{b}=1$ and $\mathrm{a}=5$.
By BPT

$$
\begin{aligned}
& \frac{P X}{X Q}=\frac{P Y}{Y R} \\
& \Rightarrow \frac{P X}{X Q}+1=\frac{P Y}{Y R}+1
\end{aligned}
$$

8|Page
$\Rightarrow \frac{P X+X Q}{X Q}=\frac{P Y+Y R}{Y R}$
$\Rightarrow \frac{\mathrm{PQ}}{\mathrm{XQ}}=\frac{\mathrm{PR}}{\mathrm{YR}}$
$\Rightarrow \frac{7}{3}=\frac{6.3}{Y R}$
$\Rightarrow Y R=\frac{6.3 \times 3}{7}=2.7 \mathrm{~cm}$

Draw $A E \perp B C$
In ?ABD since $\angle D>90^{\circ}$
$\therefore \therefore A B^{2}=A D^{2}+B D^{2}+2 B D \times D E \ldots(1)$ (using Obtuse angle property) ? $A C D=$ since $\angle D<90^{\circ}$ $A C^{2}=A D^{2}+D C^{2}-2 D C \times D E \ldots$ (2) (using acute angle property)
Adding (1) and (2)
$A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)$
$=2\left(A D^{2}+\left(\frac{1}{2} B C\right)^{2}\right)$
Or $A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)$
Hence proved.
21]
Given: $\frac{\cos \alpha}{\cos \beta}=m, \quad \frac{\cos \alpha}{\sin \beta}=n$

$$
\Rightarrow m^{2}=\frac{\cos ^{2} \alpha}{\cos ^{2} \beta}, \quad n^{2}=\frac{\cos ^{2} \alpha}{\sin ^{2} \beta}
$$

L.H.S. $=\left(m^{2}+n^{2}\right) \cos ^{2} \beta$
$=\left[\frac{\cos ^{2} \alpha}{\cos ^{2} \beta}+\frac{\cos ^{2} \alpha}{\sin ^{2} \beta}\right] \cos ^{2} \beta$
$=\cos ^{2} \alpha\left[\frac{\sin ^{2} \beta+\cos ^{2} \beta}{\sin ^{2} \beta \cos ^{2} \beta}\right] \cos ^{2} \beta$
$=\cos ^{2} \alpha\left(\frac{1}{\cos ^{2} \beta \sin ^{2} \beta}\right) \cos ^{2} \beta$
$=\frac{\cos ^{2} \alpha}{\sin ^{2} \beta}=n^{2}=$ R.H.S.
Therefore, $\left(m^{2}+n^{2}\right) \cos ^{2} \beta=n^{2}$
OR
$U \operatorname{sing} \sec \left(90^{\circ}-\theta\right)=\operatorname{cosec} \theta, \tan \left(90^{\circ}-\theta\right)=\cot \theta$
and $\cos \left(90^{\circ}-\theta\right)=\sin \theta$
$\underline{\sec \left(90^{\circ}-\theta\right) \cdot \operatorname{cosec} \theta-\tan \left(90^{\circ}-\theta\right) \cot \theta+\cos ^{2} 25^{\circ}+\cos ^{2} 65^{\circ}}$
$3 \tan 27^{\circ} \tan 63^{\circ}$
$=\frac{\operatorname{cosec} \theta \cdot \operatorname{cosec} \theta-\cot \theta \cdot \cot \theta+\cos ^{2}\left(90^{\circ}-65^{\circ}\right)+\cos 25^{\circ}}{3 \tan \left(90^{\circ}-63^{\circ}\right) \tan 63^{\circ}}$
$=\frac{\operatorname{cosec}^{2} \theta-\cot ^{2} \theta+\sin ^{2} 65^{\circ}+\cos ^{2} 65^{\circ}}{3 \cot 63^{\circ} \tan 63^{\circ}}$
[Since, $\sin ^{2} \theta+\cos ^{2} \theta=1$ and $\left.\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1\right]$
$=\frac{1+1}{3}=\frac{2}{3}$
22] In $\triangle A B C, \angle B=90^{\circ}$, we have

$$
\frac{A B}{A C}=\sin 30^{\circ}=\frac{1}{2} \Rightarrow \frac{5}{A C}=\frac{1}{2} \Rightarrow A C=10 \mathrm{~cm}
$$

And, $\frac{\mathrm{BC}}{\mathrm{AC}}=\cos 30^{\circ}=\frac{\sqrt{3}}{2} \Rightarrow \frac{\mathrm{BC}}{10}=\frac{\sqrt{3}}{2} \Rightarrow \mathrm{BC}=5 \sqrt{3} \mathrm{~cm}$

Cl	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$	$100-110$	Total
fi	5	3	4	p	2	13	$27+\mathrm{p}$
xi	55	65	75	85	95	105	
fixi	275	195	300	85 p	190	1365	$2325+85 \mathrm{p}$

Mean $={\frac{\sum f_{i} x_{i}}{\sum f_{i}}}_{\text {Substituting the values we get }}$
$\Rightarrow 86=\frac{2325+85 p}{27+p}$
$\Rightarrow 86 p+2322=2325+85 p$
$\Rightarrow \mathrm{p}=3$

Since the maximum frequency is 25 and it lies in the class interval 20-30.

Age in yrs. (more than or equal to)	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
No. of persons (fi)	10	15	25	22	13	10	5

Therefore, modal class $=$ 20-30
? ? $=20, h=10, f 0=15, f 1=25, f 2=22$
mode $=$?? $+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h$
$=20+\left(\frac{25-15}{2(25)-15-22}\right) \times 10$
$=20+7.69=27.69$ years (approx.)
25] If the number 15 n where $\mathrm{n} \in \mathrm{N}$, were to end with a zero, then its prime factorisation must have 2 and 5 as its factors. But $15=5 \times 3$
$15 n=(5 \times 3) n=5 n \times 3 n$
So Prime factors of 15 includes only 5 but not 2
Also from the Fundamental theorem of Arithmetic, the prime factorisation of a number is unique.
Hence a number of the form 15 n where $\mathrm{n} \in \mathrm{N}$, will never end with a zero.
To solve the equations, make the table corresponding to each equation.

0 \| Page
$2 x-y+6=0$
$\Rightarrow y=2 x+6$

x	$? 1$	$? 2$	$? 3$		
y	4	2	0		
$4 x+5 y-16=0$					
$\Rightarrow y=\frac{16-4 x}{5}$					
x 4 $? 1$ y 0 4				$.$	
:---					

Now plot the points and draw the graph.

Since the lines intersect at the point (?1,4), so $x=? 1$ and $y=4$ be the solution.
Also by observation vertices of triangle formed by lines and x-axis are A (?1, 4),
$B(? 3,0)$ and $C(4,0)$.
Let $p(x)=x 3-6 x 2-15 x+80$
Let say that we subtracted $a x+b$ so that it is exactly divisible by $x 2+x-12$
$s(x)=x 3-6 x 2-15 x+80-(a x+b)$

$$
=x 3-6 x 2-(15+a) x+(80-b)
$$

Dividend $=$ Divisor \times Quotient + Remainder
But remainder $=0$
$\therefore \quad$ Dividend $=$ Divisor \times Quotient
$s(x)=(x 2+x-12) x$ quotient
$s(x)=x 3-6 x 2-(15+a) x+(80-b)$
$x(x 2+x-12)-7(x 2+x-12)$
$=x 3+x 2-7 x 2-12 x-7 x+84$
$=x 3-6 x 2-19 x+84$
Hence, $x 3-6 x 2-19 x+84=x 3-6 x 2-(15+a) x+(80-b)$
$-15-a=-19 \quad \Rightarrow a=+4$
and $\quad 80-b=84 \quad \Rightarrow b=-4$
Hence if in $p(x)$ we subtracted $4 x-4$ then it is exactly divisible by x2 + x-12.
$A D$ is the median of $\triangle A B C$ since D is mid-point of $B C$

11 | Page
$\Rightarrow{ }_{\mathrm{BD}=\mathrm{DC}} \frac{\mathrm{BC}}{2}$
In right triangle AEB ,
$A B^{2}=A E^{2}+B E^{2}$...Pythagoras theorem
$=\left(A D^{2}-D E^{2}\right)+(B D-D E)^{2}$
Using Pythagoras theorem for right triangle AED and $\mathrm{BE}=\mathrm{BD}-\mathrm{DE}$
$=A D^{2}-D E^{2}+\left(\frac{B C}{2}-D E\right)^{2}$....from (i)
$A B 2=A D^{2}-D E^{2}+\frac{B C^{2}}{4}+D E^{2}-2\left(\frac{B C \times D E}{2}\right)$
$\Rightarrow A B^{2}=A D^{2}-B C \times D E+\frac{B C^{2}}{4}$
Hence proved.
OR
Given: A right triangle $A B C$ right angled at B.
To prove: that AC2 = AB2 + BC2
Construction:Let us draw BD \perp AC (See fig.)

Proof:
Now, $\triangle \mathrm{ADB} \sim \Delta \mathrm{ABC}$ (Using Theorem:If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse , then triangles on both sides of the perpendicular are similar to the whole triangle and to each other)

$$
\begin{aligned}
& \quad \frac{A D}{A B}=\frac{A B}{A C} \\
& \text { So, } \\
& \text { Or, } A D \cdot A C=A B 2 \\
& \text { Also, } \triangle B D \sim \triangle A B C \\
& \qquad \frac{C D}{B C}=\frac{B C}{A C} \\
& \text { (Sides are proportional) } \\
& \text { So, } C D=A C=B C 2 \\
& \text { Or, } C D, \\
& \text { Adding (1) and }(2) \text {, } \\
& A D \cdot A C+C D \cdot A C=A B 2+B C 2 \\
& O R, \quad A C(A D+C D)=A B 2+B C 2 \\
& O R, \quad A C \cdot A C=A B 2+B C 2 \\
& O R \quad A C 2=A B 2+B C 2
\end{aligned}
$$

Hence Proved.
$\triangle A B C \sim \Delta$ ADE (by AA Similarity)
$\frac{A B}{A D}=\frac{B C}{D E}=\frac{A C}{A E}$
In right $\triangle A B C$, $A B 2=B C 2+A C 2$ (by PT)
$\Rightarrow \mathrm{AB} 2=52+122=25+144=169$
$\Rightarrow \mathrm{AB}=13$
Subsisting $A B=13 \mathrm{~cm}, B C=12 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}$ in (1) and
Getting $D E=\frac{36}{13}$ and $A E=\frac{15}{13}$
To prove: $\frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A$
Submitted by student/visitor Download from: http:///suniltutorial.weebly.com/

Using the identity $\operatorname{cosec} 2 \mathrm{~A}=1+\cot 2 \mathrm{~A}$

$$
\text { L.H.S }=\frac{\cos A-\sin A+1}{\cos A+\sin A-1}
$$

$$
=\frac{\frac{\cos A}{\sin A}-\frac{\sin A}{\sin A}+\frac{1}{\sin A}}{\frac{\cos A}{\sin A}+\frac{\sin A}{\sin A}+\frac{1}{\sin A}}
$$

$$
=\frac{\cot A-1+\operatorname{cosec} A}{\cot A+1-\operatorname{cosec} A}
$$

$$
=\frac{\{(\cot A)-(1-\operatorname{cosec} A)\}\{(\cot A)-(1-\operatorname{cosec} A)\}}{\{(\cot A)+(1-\operatorname{cosec} A)\}\{(\cot A)-(1-\operatorname{cosec} A)\}}
$$

$$
=\frac{(\cot A-1+\operatorname{cosec} A)^{2}}{(\cot A)^{2}-(1-\operatorname{cosec} A)^{2}}
$$

$$
=\frac{\infty t^{2} A+1+\operatorname{cosec}^{2} A-2 \cot A-2 \operatorname{cosec} A+2 \cot A \operatorname{cosec} A}{\cot ^{2} A-\left(1+\operatorname{cosec}^{2} A-2 \operatorname{cosec} A\right)}
$$

$$
=\frac{2 \operatorname{cosec}^{2} A+2 \cot A \operatorname{cosec} A-2 \cot A-2 \operatorname{cosec} A}{\cot ^{2} A-1-\operatorname{cosec}^{2} A+2 \operatorname{cosec} A}
$$

$$
=\frac{2 \operatorname{cosec} A(\operatorname{cosec} A+\cot A)-2(\cot A+\operatorname{cosec} A)}{\cot ^{2} A-\operatorname{cosec}^{2} A-1+2 \operatorname{cosec} A}
$$

$$
=\frac{(\operatorname{cosec} A+\cot A)(2 \operatorname{cosec} A-2)}{-1-1+2 \operatorname{cosec} A}
$$

$$
=\frac{(\operatorname{cosec} A+\cot A)(2 \operatorname{cosec} A-2)}{(2 \operatorname{cosec} A-2)}
$$

$=\operatorname{cosec} \mathrm{A}+\cot \mathrm{A}$
= R.H.S
OR

$$
\begin{aligned}
& \text { LHS }=\sqrt{\frac{1+\sin A}{1-\sin A}}=\sqrt{\frac{1+\sin A}{1-\sin A} \times \frac{1+\sin A}{1+\sin A}} \\
& =\sqrt{\frac{(1+\sin A)^{2}}{(1-\sin A)(1+\sin A)}} \\
& =\sqrt{\frac{(1+\sin A)^{2}}{1-\sin ^{2} A}} \\
& =\frac{1+\sin A}{\sqrt{\cos ^{2} A}} \\
& =\frac{1+\sin A}{\cos A} \\
& =\frac{1}{\cos A}+\frac{\sin A}{\cos A} \\
& =\sec A+\tan A \\
& \text { RHS }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathrm{p}^{2}-1}{\mathrm{P}^{2}+1}=\frac{(\sec \theta+\tan \theta)^{2}+1}{(\sec \theta+\tan \theta)^{2}+1} \\
& \quad=\frac{\sec ^{2} \theta+\tan ^{2} \theta+2 \sec \theta \cdot \tan \theta-1}{\sec ^{2} \theta+\tan ^{2} \theta+2 \sec \theta \cdot \tan \theta-1}
\end{aligned}
$$

$$
\begin{array}{rlr}
=\frac{\left(\sec ^{2} \theta-1\right)+\tan ^{2} \theta+2 \sec \theta \tan \theta}{\sec ^{2} \theta+\left(1+\tan ^{2} \theta\right)+} 2 \sec \theta \tan \theta & =\frac{\tan ^{2} \theta+\tan ^{2} \theta+2 \sec \theta \tan \theta}{\sec ^{2} \theta+\sec ^{2} \theta+2 \sec \theta \tan \theta} \\
& =\frac{2 \tan ^{2} \theta+2 \sec \theta \tan \theta}{2 \sec ^{2} \theta+2 \sec \theta \tan \theta} & =\frac{2 \tan \theta(\tan \theta+\sec \theta)}{2 \sec \theta(\tan \theta+\sec \theta)}=\frac{\tan \theta}{\sec \theta}
\end{array}
$$

Hence, LHS = RHS.
We can find frequency distribution table of less than type as following -

Daily income (in Rs) (upper class limits)	Cumulative frequency
Less than 120	12
Less than 140	$12+14=26$
Less than 160	$26+8=34$
Less than 180	$34+6=40$
Less than 200	$40+10=50$

Now taking upper class limits of class intervals on x-axis and their respective frequencies on y-axis we can draw its ogive as following -

34]

Class Interval	$0-6$	$6-12$	$12-18$	$18-24$	$24-30$
Frequency	4	x	5	y	1
Cumulative frequency	4	$4+x$	$9+x$	$9+x+y$	$10+x+y$

It is given that total frequency N is 20
So, $10+x+y=20$ i.e. $x+y=10 \ldots$...(i)
Given 50% of the observations are greater than 14.4.
So median = 14.4, which lies in the class interval 12-18.
$=12, c f=4+x, h=6, f=5, N=20$
Median $=\left(\frac{\frac{N}{2}-\mathrm{cf}}{f}\right) \times \mathrm{h} \quad\left(\frac{10-(4+x)}{5}\right)_{x 6 \Rightarrow 14.4-12=}^{5} \times 12+\left(\frac{\frac{(6-x)}{5}}{x}=6-x\right.$
$\Rightarrow x=4$
Now using equation, $10+x+y=20$, we get $y=6$. Hence $x=4$ and $y=6$.

