Paper: 04 Class-X-Math: Summative Assessment - I

Total marks of the paper: 90
Total time of the paper:
3.5 hrs

Questions:

1] $\triangle A B C$ is right angled at A, the value of $\tan B \times \tan C$ is :
A. None of the above
B. -1
C. 0
D. 1

2] The graph of a polynomial $y=f(x)$ is shown in fig. The number of zeroes of $f(x)$ is :

A. 2
B. 0
C. $\frac{3}{2}$
D. 1

3] If mode $=80$ and mean $=110$ then the median is:
A. 90
B. 120
C. 110
D. 100

4] The following pairs of linear equations $2 x+5 y=3$ and $6 x+15 y=12$ represent :
A. None from a, b, c
B. Coincident lines
C. Intersecting
D. Parallel lines

5] $3 \cos \theta=1$, then the value of $\operatorname{cosec} \theta$ is :
A. $\frac{4}{3} \sqrt{2}$
B. $2 \frac{\sqrt{3}}{3}$
C. $2 \sqrt{2}$
D. $\frac{3}{2 \sqrt{2}}$

6] $\triangle A B C \sim \triangle P Q R, M$ is the mid-point of $B C$ and B is the mid-point of $Q R$. If the area of $\triangle A B C=$ 100 sq. cm and the area of $\triangle P Q R=144 \mathrm{sq} . \mathrm{cm}$ If $A M=4 \mathrm{~cm}$ then $P N$ is:
A. $\quad 5.6 \mathrm{~cm}$
B. 4 cm
C. 12 cm
D. $\quad 4.8 \mathrm{~cm}$

7] If two positive integers a and b are written as $a=x^{2} y^{2}$ and $b=x y^{2} ; x, y$ are prime numbers then HCF (a, b) is:
A. $\quad x^{2} y^{2}$
B. $x^{2} y^{3}$
C. $x y$
D. $x y^{2}$

8] For the decimal number $0 . \overline{7}$, the rational numbers is:
A. $\frac{1}{3}$
B. $\frac{111}{167}$
C. $\frac{33}{50}$
D. $\frac{7}{9}$

9] Find the zeroes of the quadratic polynomial $x^{2}+7 x+12$ and verify the relationship between the zeroes and its coefficients.
10] Can the number $6^{n}, n$ being a natural number end with the digit 5 ? Given reasons.
11] Find the median of the following data :

Marks	$0-10$	$10-30$	$30-60$	$60-80$	$80-100$
Frequency	5	15	30	8	2

12] For what value of k, will the following system of linear equations have infinitely many solutions? $2 x+3 y=4$ and $(k+2) x+6 y=3 k+2$.
13] Given that $\sin (A+B)=\sin A \cos B+\cos A \sin B$, find the value of $\sin 75^{\circ}$
OR
It cosec $\theta=\frac{13}{12}$, find the value of $\cot \theta+\tan \theta$.
14] In the given figure. E is a point on side $C B$ produced of an isosceles $\triangle A B C$ with $A B=B C$. If $A D \perp B C$ and $E F \perp A C$. Prove that $\triangle A B D \sim \triangle E C F$.

15] Rekha's mother is five times as old as her daughter Rekha. Five years later, Rekha's mother will be three times as old as her daughter Rekha. Find the present age of Rekha and her mother's age. OR
Two numbers are in the ratio $5: 6$. If 8 is subtracted from each of the numbers, the ratio becomes 4 : 5. Find the numbers.

16]
If $\sin \theta=\frac{m}{n}$, find the value of $\frac{\tan \theta+4}{4 \cot \theta+1}$
[Marks:3]

17] Find unknown entries a, b, c, d, e, f in the following distribution of heights of students in a class and the total number of students in the class in 50.

3 | P a g e

Height in c.m	$150-$ 155	$155-$ 160	$160-165$	$165-$ 170	$170-$ 175	$175-$ 180
Frequency	12	b	10	d	e	2
Cumulative Frequency	a	25	c	43	48	f

18] Find the mean of the following frequency distribution.

C.I.	$0-100$	$100-200$	$200-300$	$300-400$	$400-500$
f	2	3	5	2	3

19]
Prove that $\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \cdot \operatorname{cosec} \theta$
OR

In fig, $D E \| B C$ and $A D: D B=5: 4$, find $\frac{\text { area } \triangle D E F}{\text { area } \triangle C F B}$

${ }^{21]}$ If α, β, γ are zeroes of polynomial $6 x^{3}+3 x^{2}-5 x+1$, then find the value of $\alpha^{-1}+\beta^{-1}+\gamma^{-1}$.
22] Show that $6+\sqrt{2}$ is irrational.
OR
[Marks:3]
Prove that $5-\sqrt{3}$ is an irrational.
23] In $\triangle P Q R, P D \perp Q R$ such that D lies on $Q R$. If $P Q=a, P R=b, Q D=c$ and $D R=d$ and a, b, c, d are positive units, prove that $(a+b)(a-b)=(c+d)(c-d)$.
[Marks:3]
24] Solve for x and y :
$\frac{5}{x-1}+\frac{1}{y-2}=2$
[Marks:3]
$\frac{6}{x-1}-\frac{3}{y-2}=1$
arks.3

25] Show that the square of any positive integer cannot be of the form $5 q+2$ or $5 q+3$ for any integer q. [Marks:4]
26] State and Prove Basic proportionality theorem.
OR
Prove that ratio of the areas of two similar triangles is equal to the ratio of the square of their corresponding sides.
27] Prove that:
$\frac{2}{\cos ^{2} \theta}-\frac{1}{\cos ^{4} \theta}-\frac{2}{\sin ^{2} \theta}+\frac{1}{\sin ^{4} \theta}=\cot ^{4} \theta-\tan ^{4} \theta$
[Marks:4]

28] Solve the following equations graphically:
$x-y=1$ and $2 x+y=8$. Shade the region between the two lines and $y-a x i s$.
[Marks:4]
29] Prove that:
$\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}+\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{2}{2 \sin ^{2} \theta-1}$
[Marks:4]
OR
Without using trigonometric tables evaluate :

4 | Page
$3 \tan 35^{\circ} \tan 40^{\circ} \tan 50^{\circ} \tan 55^{\circ}-\frac{1}{2} \tan ^{2} 60^{\circ}$
$4\left(\cos ^{2} 39^{\circ}+\cos ^{2} 51^{\circ}\right)$
30] Calculate the mode of the following frequency distribution table.

Marks	No. of Students
above 25	52
above 35	47
above 45	37
above 55	17
above 65	8
above 75	2
above 85	0

31] If the remainder on division $x^{3}+2 x^{2}+k x+3$ by $x-3$ is 21 , find the quotient and the value of k. Hence, find the zeroes of the cubic polynomial $x^{3}+2 x^{2}+k x-18$.

32] Prove that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

33]
Prove that $\frac{\cos A}{1-\tan A}+\frac{\sin A}{1-\cot A}=\sin A+\cos A$
34] For the data given below draw less than ogive graph.

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Number of students	7	10	23	51	6	3

Solutions paper - 4:

1]
$\tan B=\frac{A C}{A B}$
$\left.\tan \mathrm{C}=\frac{\mathrm{AB}}{\mathrm{AC}}\right]$

$\tan B \times \tan c=\frac{A C}{A B} \times \frac{A B}{A C} \quad=1$

2] Number of zeros is one as the graph touches the x-axis at one point.

3] 3 Median $=$ Mode +2 mean
Median $=\frac{80+220}{3}=\frac{300}{3}=100$

4] $\frac{2}{6}=\frac{5}{15} \neq \frac{3}{12}$ Therefore, lines are parallel.

5] $\mathrm{BC}=\sqrt{3^{2}-1}=\sqrt{8}=2 \sqrt{2}$

5 \| Page

$$
\operatorname{cosec} \theta=\frac{3}{2 \sqrt{2}}
$$

6] $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\mathrm{AM}^{2}}{\mathrm{PN}^{2}} \Rightarrow \frac{100}{144}=\frac{4^{2}}{\mathrm{PN}^{2}}$
Therefore, $\mathrm{PN}=4.8 \mathrm{~cm}$

7] $a=x^{2} y^{2}=x \times x \times y \times y$
$\mathrm{b}=x y^{2}=x \times y \times y$
$\operatorname{HCF}(a, b)=x x y \times y=x y^{2}$

8] Let $x=0 . \overline{7}$

Then, $x=0.7777 \ldots \ldots$..... (1) Here ,the number of digits recurring is only 1 , so we multiply both sides of the equation by 10 .
$\therefore 10 x=7.777 \ldots \ldots$
Subtracting(1) from(2), we get
$9 x=7 \quad \Rightarrow x=/ 9$

9] $x^{2}+7 x+12=(x+3)(x+4)$
$\therefore-3$ and -4 are zeroes of the polynomial
Sum of zeros $=-3-4=-7=\frac{\text {-coefficient of } x}{\text { coefficient of } x^{2}}$
Product of zeros $=(-3)(-4)=\frac{12}{1}=\frac{\text { cons tan } t \text { term }}{\text { coefficient of } x^{2}}$

10] Let it possible $6 n$ ends with digit 0
$\Rightarrow 6 \mathrm{n}=10 \times \mathrm{q}$
$(2 \times 3) n=2 \times 5 \times q$
$2 n \times 3 n=2 \times 5 \times q \quad \Rightarrow \quad$ is a prime factor of $2 n \times 3 n$
Which is not possible $2 n \times 3 n$ can have only 2 and 3 are prime factors. Hence, it is not possible the number ends with digit 5.

6 | Page

11]

Marks	f	cf
$0-10$	5	5
$10-30$	15	20
$30-60$	30	50
$60-80$	8	58
$80-100$	2	6

$N=\sum f_{i}=60$
Here, $\mathrm{N}=60$ So, $\mathrm{N} / 2=30$
The cumulative frequency is just greater than $N / 2=30$ is 50 and the corresponding class is 30-60.

Hence, 30-60 is the median class.
Therefore, $\mathrm{l}=30, \mathrm{f}=30, \mathrm{~F}=20, \mathrm{~h}=30$

Now, Median $=1+\frac{\frac{N}{2}-F}{f} \times h=30+\frac{30-20}{30} \times 30 \quad$ Median $=40$

12] Condition for infinitely many solution
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{a_{1}}{a_{2}}$
$\frac{2}{k+2}=\frac{3}{6}=\frac{4}{3 k+2}$
$\frac{2}{k+2}=\frac{1}{2} \quad \frac{4}{3 k+2=\frac{1}{2}}$
$k+2=4 \quad 3 k+2=8$
$k=2$

$$
k=2
$$

$\therefore \mathrm{k}=2$ is the common solution.

13] $\sin (45+30)=\sin 45 o \cos 30 o+\cos 45 o \sin 30 o$
$\operatorname{Sin} 750=\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{2}$
$=\frac{\sqrt{3}}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}$

$$
=\frac{\sqrt{3}+1}{2 \sqrt{2}}
$$

7 | P a g e

OR

Cosec $=\frac{13}{12}$

$A B=\sqrt{13^{2}-12^{2}}=\sqrt{25}=5$
$\operatorname{Cot} \theta+\tan \theta=\frac{5}{12}+\frac{12}{5}=\frac{25+144}{60}=\frac{169}{60}$

14] In $\triangle A B D$ and $\triangle E C F$
$\angle \mathrm{D}=\angle \mathrm{F}=90 \mathrm{o}$
$\angle B=\angle C(\because A C=A B)$

By AA similarity, $\triangle \mathrm{ABD} \sim \triangle \mathrm{ECF}$

15] Let Rekha's Age be 'x'years
And her mother's age be 'y' years
$y=5 x$ as per given data ... (1)
After 5 years
$y+5=3(x+5)$
$y-3 x=10 \ldots$ (2)
Solving (1) and (2) equation.
Rekha's age $=5$ years

Mother's age $=25$ years
OR,
Let the two number be $5 x, 6 x$

8 | Page

$$
\begin{aligned}
& \frac{5 x-8}{6 x-8}=\frac{4}{5} \\
& \Rightarrow 25 \times-40=24 \times-32 \\
& \Rightarrow 25 \times-24 \times=-32+40 \\
& \Rightarrow \times=8
\end{aligned}
$$

Two numbers are 40,48.

16]

$$
\begin{aligned}
& \sin \theta=\frac{m}{n} \Rightarrow \tan \theta=\sqrt{n^{2}-m^{2}} \\
& \begin{aligned}
\frac{\tan \theta+4}{4 \cot \theta+1}= & \frac{\frac{m}{\sqrt{n^{2}-m^{2}}}+4}{\frac{4 \sqrt{n^{2}-m^{2}}}{m}+1} \\
& =\frac{\frac{m+4 \sqrt{n^{2}-m^{2}}}{\sqrt{n^{2}-m^{2}}}}{\frac{4 \sqrt{n^{2}-m^{2}}+m}{m^{2}}}=\frac{m+4 \sqrt{n^{2}-m^{2}}}{\sqrt{n^{2}-m^{2}}} \times \frac{m}{4 \sqrt{n^{2}-m^{2}}+m} \\
& =\frac{m}{\sqrt{n^{2}-m^{2}}}
\end{aligned}
\end{aligned}
$$

17] $a=12 a+b=25 \Rightarrow b=13 c=25+10=35 c+d=43 \Rightarrow d=43-35=843+e=48 \Rightarrow e=5$
$f=48+2=50$

18] To calculate the mean, first obtain the column of mid value and then multiply the corresponding values of frequency and mid value.

C.I.	f	Mid value (x)	fx
$0-100$	2	50	100
$100-200$	3	150	450
$200-300$	5	250	1250
$300-400$	2	350	700
$400-500$	3	450	1350
	15		3850

Here $\sum \mathrm{f}=15$ and $\sum \mathrm{fx}=3850$, so the mean is given as

$$
\bar{x}=\frac{\sum f x}{\sum f}=\frac{3850}{15}=256.67
$$

19]

$$
\frac{\tan ^{2} \theta}{\tan \theta-1}+\frac{1}{\tan \theta(1-\tan \theta)}=\frac{1-\tan ^{3} \theta}{\tan \theta(1-\tan \theta)}
$$

9|Page
$\frac{(1-\tan \theta)\left(1+\tan \theta+\tan ^{2} \theta\right)}{\tan \theta(1-\tan \theta)}$
$=\quad \tan (1-\tan)$
$\frac{\sec ^{2} \theta+\tan \theta}{\tan \theta}=\frac{\sec ^{2} \theta}{\tan \theta}+1=\frac{\cos \theta}{\sin \theta \cos ^{2} \theta}+1$
$=\frac{1}{\sin \theta \cos \theta}+1$
Simplifying we get, $1+\sec ^{\theta} \cdot \operatorname{cosec} \theta$
OR
$\frac{\sin 35^{\circ}}{\sin \left(90-35^{\circ}\right)}+\frac{\cos 55 \times \frac{1}{\cos (90-35)}}{\tan 5 \tan 25 \cot 25 \cot 5}$
$=\frac{\sin 35^{\circ}}{\sin 35^{\circ}}+\frac{\cos 55 \frac{1}{\cos 55}}{\tan 5 \tan 25 \cot 25 \cot 5}$
$=1+\frac{1}{\tan 5 \tan 25 \frac{1}{\tan 5 \tan 25}}$
$=1+1=2$
20] $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$ by AA similarity
$\therefore \frac{A D}{A B}=\frac{D E}{B C}$
$\triangle \mathrm{DFE} \sim \triangle \mathrm{CFB}$ by AA similarity
$\frac{D E}{B C}=\frac{A D}{A B}$
$\frac{(\operatorname{ar} \triangle \mathrm{DEF})}{(\operatorname{ar} \triangle \mathrm{CFB})}=\frac{\mathrm{DE}^{2}}{\mathrm{BC}^{2}}$
$\frac{\operatorname{ar}(\triangle D E F)}{\operatorname{ar}(\triangle C F B)}=\frac{A D^{2}}{A B^{2}}=\frac{5^{2}}{9^{2}}=\frac{25}{81}$
21] Given $p(x)=6 x 3+3 \times 2-5 x+1$
$a=6, b=3, c=-5 d=1$
α, β, rare zero. $\therefore \alpha+\beta+r=\frac{-b}{a}=\frac{-1}{2}$
$\alpha \beta_{\gamma}=\frac{-d}{a}=\frac{-1}{6}$

10 | Page
$\alpha^{-1}+\beta^{-1}+\gamma^{-1}=\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{\alpha \beta+\beta \gamma+\gamma \alpha}{\alpha \beta \gamma}=-\frac{-\frac{5}{6}}{-\frac{1}{6}}=5$

22]
Let ${ }^{6}+\sqrt{2}$ be rational and equal to $\frac{a}{b}$
then $\frac{6+\sqrt{2}}{1}=\frac{a}{b}$ where a and b are co primes, $b \neq 0$
$\therefore \sqrt{2}=\frac{a}{b}-6$
$\sqrt{2}=\frac{a-6 b}{b}$ here a, b are integers $\quad \frac{a-6 b}{b}$ is rational .Therefore, $\sqrt{2}$ is rational
$\therefore \sqrt{2}$ is rational which is a contradiction
$\therefore 6+\sqrt{2}$ is an irrational number
OR

Let $5-\sqrt{3}$ be rational equal to $\frac{a}{b}$
Then $5-\sqrt{3}=\frac{a}{b} \Rightarrow \sqrt{3}=5-\frac{a}{b}$
$\sqrt{3}=\frac{5 b-a}{b}$
$\sqrt{3}$ is rational because $\frac{5 b-a}{b}$ is rational
a, b are integers
$\therefore \sqrt{3}$ is rational which is a contradiction

Hence $5-\sqrt{3}$ is an irrational number

23]
In fig, $\triangle P Q D, \angle \mathrm{PDQ}=90^{\circ}$

Using Pythagoras thm.

11|Page

PD2 = a2-c2 ...(1)
Similarly in $\triangle \mathrm{PDR}, \angle \mathrm{PDR}=90^{\circ}$
PD2 $=\mathrm{b} 2-\mathrm{d} 2$...(2)
From (1) and (2) a2-c2 = b2-d2
$\Rightarrow \mathrm{a} 2-\mathrm{b} 2=\mathrm{c} 2-\mathrm{d} 2$
$\therefore(a+b)(a-b)=(c+d)(c-d)$
24]
$\frac{5}{x-1}+\frac{1}{y-2}=2$
$\frac{6}{x-1}-\frac{3}{y-2}=1$
Multiply equation (1) by 3 and add in equation (2), we get
$\frac{15}{x-1}+\frac{3}{y-2}+\frac{6}{x-1}-\frac{3}{y-2}=6+1$
$\Rightarrow \frac{21}{x-1}=7 \Rightarrow 7(x-1)=21$
$\Rightarrow x-1=3 \Rightarrow x=4$
Using equation (1),
$\frac{5}{3}+\frac{1}{y-2}=2 \Rightarrow \frac{1}{y-2}=2-\frac{5}{3}=\frac{1}{3}$
$\Rightarrow y-2=3 \Rightarrow y=5$
Hence $x=4, y=5$.

25] Let $5 q+2,5 q+3$ be any positive integers

$$
(5 q+2) 2=25 q 2+20 q+4
$$

$$
=5 q(5 q+4)+4 \text { is not of the form } 5 q+2
$$

Similarly for 2nd
$(5 q+3) 2=25 q 2+30 q+9$
$=5 q(5 q+6)+9$ is not of the form $5 q+3$
So, the square of any positive integer cannot be of the form5q+2 or $5 q+3$
For any integer q

26] Statement If a line is drawn parallel of one side of a triangle to intersect the other two sides in distinct points, Submitted by student /visitor Download from: http://jsuniltutorial.weebly.com/

12 | Page
the other two sides are divided in the same ration.

Given: A triangle $A B C$ in which a line parallel to side $B C$ intersects other two sides $A B$ and $A C$ at D and E respectively (see fig.)

To prove that $\frac{A D}{B D}=\frac{A E}{E C}$.
Construction:Let us join BE and CD and then draw $\mathrm{DM} \perp \mathrm{AC}$ and $\mathrm{EN} \perp \mathrm{AB}$.

Proof:Now, area of

$$
\triangle \mathrm{ADE}\left(=\frac{1}{2} \text { base } \times \text { height }\right)=\frac{1}{2} \mathrm{AD} \times \mathrm{EN} .
$$

Letus denote the area of $\triangle A D E$ is denoted as are (ADE).
So, $\quad \operatorname{ar}(A D E)=\frac{1}{2} \mathrm{AD} \times E N$
Similarly, \quad ar $(B D E)=\frac{1}{2} D B \times E N$.

$$
\operatorname{ar}(\mathrm{ADE})=\frac{1}{2} \mathrm{AE} \times \mathrm{DM} \text { and } \operatorname{ar}(\mathrm{DEC})=\frac{1}{2} \mathrm{EC} \times \mathrm{DM}
$$

Therefore, $\frac{\operatorname{ar}(\mathrm{ADE})}{\operatorname{ar}(\mathrm{BDE})}=\frac{\frac{1}{2} \mathrm{AD} \times \mathrm{EN}}{\frac{1}{2} \mathrm{DB} \times \mathrm{EN}}=\frac{\mathrm{AD}}{\mathrm{DB}}$
and $\quad \frac{\operatorname{ar}(\mathrm{ADE})}{\operatorname{ar}(\mathrm{DEG})}=\frac{\frac{1}{2} \mathrm{AE} \times \mathrm{DM}}{\frac{1}{2} \mathrm{EC} \times D M}=\frac{\mathrm{AE}}{\mathrm{EC}}$

OR

Note that \triangle BDE and DEC are on the same base $D E$ and between the same parallels $B C$ and $D E$.

So, $\operatorname{ar}(\mathrm{BDE})=\operatorname{ar}(\mathrm{DEG})$
Therefore, from (1), (2) and (3), we have:

$$
\frac{A D}{D B}=\frac{A E}{E C}
$$

Statement: The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

Given: ?ABC ~ ?PQR To Prove: $\frac{A \mathrm{~B}^{2}}{\mathrm{PQ}^{2}}=\frac{\mathrm{BC}^{2}}{Q R^{2}}=\frac{A C^{2}}{P R^{2}}$ Construction: Draw $A D$? $B C$ and $P S$? $Q R$

$$
\frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})}=\frac{\frac{1}{2} \times \mathrm{BC} \times \mathrm{AD}}{\frac{1}{2} \times \mathrm{QR} \times P \mathrm{PS}}=\frac{\mathrm{BC}}{\mathrm{QR}} \times \frac{\mathrm{AD}}{\mathrm{PS}}
$$

Proof:
Therefore, $\frac{A D}{P S}=\frac{A B}{P Q}$
Therefore, $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}$
?ADB ~ ?PSQ (AA)

Therefore, $\frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})}=\frac{\mathrm{BC}}{\mathrm{QR}} \times \frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}$

But ?ABC ~ ?PQR
Therefore, $\frac{A D}{P S}=\frac{B C}{Q R}$

From (iii)

$$
\frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})}=\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{PR}^{2}}
$$

27] $2 \sec 2^{\theta}-\sec 4^{\theta}-2 \sec 2^{\theta}+\operatorname{cosec} 4^{\theta}$
$=2\left(1+\tan 2^{\theta}\right)-\left(1+\tan 2^{\theta}\right) 2-2\left(1+\cot ^{\theta}{ }^{\theta}\right)+\left(1+\cot ^{\theta}{ }^{\theta}\right) 2$
$=\left(1+\tan 2^{\theta}\right)\left(1-\tan 2^{\theta}\right)-\left(1+\cot 2^{\theta}\right)\left(1-\cot 2^{\theta}\right)=1-\tan ^{4} \theta-\left(1-\cot ^{4} \theta\right)$
$=1-\tan 4^{\theta}-1+\cot 4^{\theta}$
$=\cot 4-\tan 4 \theta$
28] We have,
$x-y=1$
$2 x+y=8$
Graph of the equation $x-y=1$:
We have,
$x-y=1=>y=x-1$ and $x=y+1$
Putting $x=0$, we get $y=-1$
Putting $\mathrm{y}=0$, we get $\mathrm{x}=1$
Thus, we have the following table for the points on the line $x-y=1$:

x	0	1
y	-1	0

Plotting points $A(0,-1), B(1,0)$ on the graph paper and drawing a line passing through them, we obtain the graph of the line represented by the equation $x-y=1$ as shown in fig.

Graph of eqn $2 x+y=8$:

14 | Page

We have,
$2 x+y=8=>y=8-2 x$
Putting $x=0$, we get $y=8$
Putting $y=0$, we get $x=4$
Thus, we have the following table giving two points on the line represented by the equation $2 x+y=8$.

x	0	4
y	8	0

Plotting points $C(0,8)$ and $D(4,0)$ on the same graph paper and rawing a line passing through them, we obtain the graph of the line represented by the equation $2 x+y=8$ as shown in fig.

Clearly, the 2 line intersect at $P(3,2)$. The area bounded by these 2 lines and y-axis is shaded in the given fig.

$$
\text { 29] } \begin{aligned}
& \frac{(\sin \theta-\cos \theta)^{2}+(\sin \theta+\cos \theta)}{\sin ^{2} \theta-\cos ^{2} \theta} \\
& =\frac{\sin ^{2} \theta-2 \sin \theta \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta}{\sin ^{2} \theta-\cos ^{2} \theta} \\
& = \\
& \frac{2 \sin ^{2} \theta+2 \cos ^{2} \theta}{\sin ^{2} \theta-\left(1-\sin ^{2} \theta\right)}
\end{aligned}
$$

15 | Page
$=\frac{2\left(\sin ^{2} \theta+\cos ^{2} \theta\right)}{2 \sin ^{2} \theta-1}=\frac{2}{2 \sin ^{2} \theta-1}$

OR
$\frac{3 \tan 35^{\circ} \cot \left(90^{\circ}-55^{\circ}\right) \tan 40^{\circ} \cot \left(90^{\circ}-50^{\circ}\right)-\frac{1}{2}(\sqrt{3})^{2}}{4\left(\cos ^{2} 39^{\circ}\right)}=\frac{3-\frac{3}{2}}{4}=\frac{6-8}{8}=\frac{3}{8}$

30]

Marks	Frequency
$25-35$	5
$35-45$	10
$45-55$	20
$55-65$	9
$65-75$	6
$75-85$	2
Total	52

Here the maximum frequency is 20 and the corresponding class is $45-55$. So, $45-55$ is the modal class.
We have, $l=45, h=10, f=20, f_{1}=10, f_{2}=9$
Mode $=\ell_{+}\left[\frac{f-f_{1}}{2 f-f_{1}-f_{2}}\right] \times h=45+\left[\frac{20-10}{40-10-9}\right] \times 10$
Mode=49.7
31] Let $p(x)=x 3+2 x 2+k x+3$
Then using Remainder theorem

$$
\begin{aligned}
& \mathrm{p}(3)=33+2 \times 32+3 \mathrm{k}+3=21 \\
& \Rightarrow_{\mathrm{k}}=-9
\end{aligned}
$$

$$
\begin{array}{r}
x-3 \begin{array}{r}
x^{2}+5 x+6 \\
x^{3}+2 x^{2}-9 x+3 \\
x^{3}-3 x^{2} \\
\frac{-\quad+}{5 x^{2}-9 x+3} \\
5 x^{2}-15 x+3 \\
-+ \\
\frac{6 x+3}{6 x-18} \\
\frac{-+}{21}
\end{array}
\end{array}
$$

Quotient of $p(x)$ is $x 2+5 x+6$
Hence, $x 3+2 x 2-9 x+3=(x 2+5 x+6)(x-3)+21$
$16 \mid P$ age
$\therefore \mathrm{x} 3+2 \mathrm{x} 2-9 \mathrm{x}-18=(\mathrm{x}-3)(\mathrm{x}+2)(\mathrm{x}+3)$
All the zeros of $p(x)$ are $3,-2,-3$.
32] Given: $\triangle A B C$ is a right angled triangle, $\angle B=900$
To prove: AB2 + BC2 = AC2
Construction: Drop a perpendicular BD on the side AC.

Proof: From triangle $A D B$ and triangle $A B C, \frac{A D}{A B}=\frac{A B}{A C}$
We can re-write as, $\mathrm{AC} \times \mathrm{AD}=\mathrm{AB2}$
Also, triangle $B D C$ is similar to triangle $A B C$.
Equating the proportional sides of the similar triangles BDC and ABC,
$\frac{C D}{B C}=\frac{B C}{A C}$
$\Rightarrow A C \times C D=B C 2$
Now adding this to the equation that we had obtained,

$$
\begin{aligned}
& A C \times A D+A C \times C D=A B 2+B C 2 \\
& \Rightarrow A C \times(A D+C D)=A B 2+B C 2 \\
& \Rightarrow A C \times A C=A B 2+B C 2 \\
& \Rightarrow A C 2=A B 2+B C 2
\end{aligned}
$$

33]
LHS $=\frac{\cos A}{1-\frac{\sin A}{\cos A}}+\frac{\sin A}{1-\frac{\cos A}{\sin A}}$

$$
=\frac{\cos ^{2} A}{\cos A-\sin A}+\frac{\sin ^{2} A}{\sin A-\cos A}
$$

$$
=\frac{\cos ^{2} A}{\cos A-\sin A}-\frac{\sin ^{2} A}{\cos A-\sin A}
$$

17 |Page

$$
\begin{aligned}
& =\frac{\cos ^{2} A-\sin ^{2} A}{(\cos A-\sin A)} \\
& =\frac{(\cos A+\sin A)(\cos A-\sin A)}{\cos A-\sin A} \\
& =\cos A+\sin A=\text { RHS }
\end{aligned}
$$

34] We first prepare the cumulative frequency distribution table by less than method as given below:

Marks no. of students marks less than cumulative frequency
$0-107107$
$10-20102017$
$20-30233040$
$30-40514091$
$40-5065097$
$50-60260100$

Other than the given class intervals, we assume a class-10-0 before the first class interval $0-10$ with zero frequency.

Now, we mark the upper class limits along X -axis on a suitable scale and the cumulative frequencies along Y -axis on a suitable scale.

Thus, we plot the points $(0,0),(10,7),(20,17),(30,40),(40,91),(50,97)$ and $(60,100)$.
Now, we join the plotted points by a free hand curve to obtain the required ogive.

