Paper: 03 Class-X-Math: Summative Assessment - I

Total marks of the paper: 90
Total time of the paper:
3.5 hrs

Questions:

1] Triangle $A B C$ is similar to triangle DEF and their areas are
A. 13
B. 8
C. 11
D. 11.2

2] The graph $y=p(x)$ is shown below. How many zeroes does the polynomial $p(x)$ have?

A. 1
B. 2
C. 3
D. 4

3] Which of the following is not a measure of central tendency :
[Marks:1]
A. Mode
B. Median
C. Mean
D. Range

4] The number $7 \times 11 \times 13+13+13 \times 2$ is
A. multiple of 7
B. Neither prime nor composite
C. Prime
D. Composite

5] HCF of the smallest composite number and the smallest prime number is
A. 4
B. 0
C. 1
D. 2

6] For what value of ' K ' will the system of equations $3 x+y=1$, $(2 K-1) x+(K-1) y=2 K+1$ have no solution.
A. -2
B. 1
C. 3
D. 2

7]
If $3 \cot A=4$, then $\frac{1-\tan ^{2} A}{1+\tan ^{2} A}=$
A. $\frac{7}{16}$
B. $\frac{16}{25}$
C. $\frac{9}{25}$
D. $\frac{7}{25}$

8] If $\tan A=\cot B$, then $A+B=$?
[Marks:1]
A. 60°
B. 45°
C. 30°
D. 90°

9] In figure, If $A D \perp B C$, then prove that $A B^{2}+C D^{2}=A C^{2}+B D^{2}$

10] Find LCM and HCF of 120 and 144 by fundamental theorem of Arithmetic.
$3 x+4 y=10$ and $2 x-2 y=2$
12] Prove that $\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cos ^{2} \theta=1$.
[Marks:2]
13] Write a frequency distribution table for the following data:

Marks	Above 0	Above 10	Above 20	Above 30	Above 40	Above 50
No. of students	30	28	21	15	10	0

14] If $x-2$ is a factor of $x^{3}+a x^{2}+b x+16$ and $a-b=16$, find the value of a and b.
OR
[Marks:2]
If m, n are the zeroes of polynomial $a x^{2}-5 x+c$, find the value of a and c if $m+n=m . n$
15] Find the mode of the following data:

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
No. of students	3	12	32	20	6

16] In $\triangle A B C$, if $A D$ is the median, then show that $A B^{2}+A C^{2}=2\left[A D^{2}+B D^{2}\right]$.
[Marks:3]
17] Prove that:

$$
\frac{1+\cos A}{\sin A}+\frac{\sin A}{1+\cos A}=2 \operatorname{cosec} A
$$

18] The sum of the numerator and denominator of a fraction is 8 . If 3 is added to both the numerator and the denominator the fraction becomes $\frac{3}{4}$. Find the fraction.
OR
Seven times a two digit number is equal to four times the number obtained by reversing the order of its digits. If the difference between the digit is 3 , find the number.
${ }^{19]}$ Prove that $\sqrt{11}$ is an irrational.
OR
Prove that $2 \sqrt{3}-7$ is an irrational.
20] Find the median of the following data.

Class Interval	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	$100-120$
Frequency	7	8	12	10	8	5

OR
The mean of the following data is 53 , find the missing frequencies.

Age in years	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	Total
Number of people	15	f_{1}	21	f_{2}	17	100

21] In figure,
$\triangle A B C$ is such that $\angle A D C=\angle B A C$. Pr ove that $C A^{2}=C B \times C D$

[Marks:3]

22] Prove that:
$\frac{1+\sec A}{\sec A}=\frac{\sin ^{2}}{1-\cos A}$
OR
Without using trigonometric tables evaluate:
[Marks:3]
$3 \tan 35^{\circ} \tan 40^{\circ} \tan 50^{\circ} \tan 55^{\circ}-\frac{1}{2} \tan ^{2} 60^{\circ}$

$$
4\left(\cos ^{2} 39^{\circ}+\cos ^{2} 51^{\circ}\right)
$$

23] In dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$ the quotient $q(x)$ and the remainder $r(x)$ were $x-2$ and $-2 x+4$ respectively. Find $g(x)$.
24] For what values of a and b does the following pairs of linear equations have an infinite number of solutions:
[Marks:3]
$2 x+3 y=7 ; a(x+y)-b(x-y)=3 a+b-2$
25] Use Euclid's division lemma to show that the square of any positive integer is either of the form 3 m or $3 m+1$ for some integer m.
26] 100 surnames were randomly picked up from a local telephone directory and the frequency distribution of the number of letters in the English alphabets in the surnames was obtained as follows:

No. of letters	$1-4$	$4-7$	$7-10$	$10-13$	$13-16$	$16-19$
No. of surnames	6	30	40	16	4	4

What is the average length of a surname? Which average you will use? Justify.
27] Prove that:
$\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\tan \theta+\cot \theta$
[Marks:4]
OR
$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)(\tan A+\cot A)=1$
28] State and prove Basic proportionality theorem.
OR
[Marks:4]
State and prove Pythagoras theorem.
29] If $\tan \theta+\sin \theta=m$ and $\tan \theta-\sin \theta=n$. Show that $m^{2}-n^{2}=4 \sqrt{m n}$.
30] What must be subtracted from $x^{3}-6 x^{2}-15 x+80$ so that the result is exactly divisible by $x^{2}+x-12$? [Marks:4]
31] Solve graphically the pair of equations $2 x+3 y=11$ and
$2 x-4 y=-24$. Hence find the value of coordinate of the vertices of the triangle so formed.
32] The mode of the following frequency distribution is 55 . Find the value of f_{1} and f_{2}.

Class Interval	$0-10$	$15-30$	$30-45$	$45-60$	$60-75$	$75-90$	Total
Frequency	6	7	f_{1}	15	10	f_{2}	51

33] Prove that ratio of the areas of two similar triangles is equal to the ratio of the square of their corresponding sides.

34] Prove that :

$$
\frac{1}{\sec \theta-\tan \theta}-\frac{1}{\cos \theta}=\frac{1}{\cos \theta}-\frac{1}{\sec \theta+\tan \theta}
$$

Solutions paper-03:

1]

$$
\begin{aligned}
& \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}} \\
& \Rightarrow \frac{64}{121}=\frac{\mathrm{BC}^{2}}{(15.4)^{2}} \\
& \Rightarrow \mathrm{BC}^{2}=\frac{64}{121} \times(15.4)^{2} \\
& \Rightarrow \mathrm{BC}=\frac{8}{11} \times 15.4=11.2
\end{aligned}
$$

2] Zeroes of a polynomial are the x-coordinates of the points where its graph crosses or touches the X - axis. Graph of $y=p(x)$ intersects the X-axis at 4 points. Therefore, the polynomial $p(x)$ has 4 zeroes

3] Range is not a measure of central tendency.

4] $7 \times 11 \times 13+13+13 \times 2=13(7 \times 11+1+2)=13(80)$

5] Smallest composite number= 4 and the smallest prime number=2. HCF of 2 and $4=2$.

6] For the system of linear equations: $a 1 x+b 1 y+c 1=0$, and
$a 2 x+b 2 y+c 2=0$ to have no solution $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
For the system of equations $3 x+y=1$,
$(2 K-1) x+(K-1) y=2 K+1 a 1=3, b 1=1, c 1=1$, and
$\mathrm{a} 2=2 \mathrm{~K}-1 \mathrm{~b} 2=\mathrm{K}-1 \mathrm{c} 2=2 \mathrm{~K}+1$

$$
\frac{3}{2 K-1}=\frac{1}{K-1} \neq \frac{1}{2 K+1}
$$

This gives $\mathrm{K}=2$.

7] Given that $3 \cot A=4$, we have, $\cot A=4 / 3$
Then, $\tan A=3 / 4$
Now, $(1-\tan 2 A)=1-\frac{9}{16}=\frac{7}{16}$

Submitted by student /visitor Download from: http://jsuniltutorial.weebly.com/

5 | Page

And, $(1+\tan 2 A)=1+\frac{9}{16}=\frac{25}{16}$

THerefore, $\frac{1-\tan ^{2} \mathrm{~A}}{1+\tan ^{2} \mathrm{~A}}=\frac{7}{25}$

8] $\tan A=\cot B$
$\tan A=\tan (900-B)$
$A=900-B$ or $A+B=900$

9] $\quad \ln \triangle \mathrm{ADC}, \mathrm{AD} 2=\mathrm{AC} 2-\mathrm{CD} 2$

In $\triangle \mathrm{ABD}, \mathrm{AD} 2=\mathrm{AB} 2-\mathrm{DB} 2$
$\mathrm{AB} 2-\mathrm{B} 2=\mathrm{AC} 2-\mathrm{CD} 2$
$\Rightarrow \mathrm{AB} 2+\mathrm{CD} 2=\mathrm{AC} 2+\mathrm{BD} 2$

10] $120=23 \times 3 \times 5$
$144=24 \times 32$

LCM $=24 \times 32 \times 5=720$
$\mathrm{HCF}=23 \times 3=24$

11] $3 x+4 y=10$
$4 x-4 y=4$
$7 \times=14$
$x=2$
$x-y=1 \Rightarrow y=x-1=2-1=1$
The solution $x=2, y=1$

12] We know that $\sin 2 \theta+\cos 2 \theta=1$ Taking cube of both sides $(\sin 2 \theta+\cos 2 \theta) 3=13$
$(\sin 2 \theta) 3+(\cos 2 \theta) 3+3 \sin 2 \theta \cdot \cos 2 \theta(\sin 2 \theta+\cos 2 \theta)=1$

Therefore, $\sin 6 \theta+\cos 6 \theta+3 \sin 2 \theta \cos 2 \theta=1$

13]

Marks	No. of students
$0-10$	2

Submitted by student /visitor Download from: http://jsuniltutorial.weebly.com/

6 | Page

$10-20$	7
$20-30$	5
$30-40$	10
$40-50$	30
Total	

14]
Let $p(x)=x 3+a x 2+b x+16$
$g(x)=x-2 \quad$ is a factor of $p(x)$

$$
\therefore \therefore \mathrm{p}(2)=0
$$

$$
\text { so, } \begin{align*}
p(2)=8+4 a & +2 b+16=0 \\
& =4 a+2 b=-24 \\
& =2 a+b=-12 \tag{i}
\end{align*}
$$

Also $a-b=16$
(ii)

Solving (i) and (ii)

$$
3 a=4 \Rightarrow a=\frac{\frac{4}{3}}{}
$$

OR

Given polynomial $p(x)=a x 2-5 x+c$

Sum of zeroes $m+n=\frac{+5}{a}$

Product of zeroes $m n=\frac{c}{a}$

Given: $\mathrm{m}+\mathrm{n}=\mathrm{mn}=10$

$$
\begin{aligned}
& \frac{5}{a}=10 \Rightarrow a=\frac{1}{2} \\
& \frac{c}{a}=10 \\
& \frac{c}{\frac{1}{2}}=10 \\
& 2 c=10 \\
& \Rightarrow c=5
\end{aligned}
$$

7 \| Page

15]
Modal Class $=20-30 ?=20, \mathrm{fO}=12, \mathrm{f} 1=32, \mathrm{f} 2=20, \mathrm{~h}=10$ Mode $=\quad \ell+\left(\frac{\mathrm{f}_{1}-\mathrm{f}_{0}}{2 \mathrm{f}_{1}-\mathrm{f}_{0}-\mathrm{f}_{2}}\right) \mathrm{h}$
$=20+\left(\frac{32-12}{64-12-20}\right) 10$
Mode $=20+\frac{20 \times 10}{32}=26.25$

16]

Construction - draw $\mathrm{AE} \perp \mathrm{BC}$
In right triangle AEB and AEC
$\mathrm{AB} 2+\mathrm{AC} 2=\mathrm{BC} 2+\mathrm{AE} 2+\mathrm{EC} 2+\mathrm{AC} 2$
$=2 A E 2+2 E D 2+B D 2+D C 2$
$\because B D=D C$
$A B 2+A C 2=2 A E 2+2 E D 2+2 B D 2$
$=2[A E 2+E D 2]+2 B D 2$

$$
=2(A D 2+B D 2)
$$

17]

$$
\begin{aligned}
& \text { LHS }=\frac{(1+\cos A)^{2}+\sin ^{2} A}{\sin A(1+\cos A)} \\
& =\frac{1+2 \cos A+\cos ^{2} A+\sin ^{2} A}{\sin A(1+\cos A)} \\
& =\frac{2(1+\cos A}{\sin A(1+\cos A)} \\
& =\frac{2(1+\cos A}{\sin A(1+\cos A)}=2 \operatorname{cosec} A=\text { RHS }
\end{aligned}
$$

18]
Let the fraction be: $\frac{x}{y}$

8 | Page

According to the question
$x+y=8$
$\frac{x+3}{y+3}=\frac{3}{4} \Rightarrow 4 x-3 y=3$
On solving we get $x=3, y=5$
The fraction is $\frac{3}{5}$

OR
Let the tens and units digits of the number be x and y respectively then
$7(10 x+y)=4(10 y+x)$
$\Rightarrow 70 x+7 y=40 y+4 x$
$\Rightarrow 66 x=33 y$
$\Rightarrow y=2 x$

Also, $\mathrm{y}-\mathrm{x}=3$
On solving, $x=3, y=6$
Number $=36$.

19]
Let $\sqrt{11}$ be a rational number
\therefore Let $\sqrt{11}=\frac{p}{q}$
$\sqrt{11} q=p$
$11 q 2=p 2$

11 divides p 2 hence 11 divides P .

Let $p=11 c$
$\sqrt{11} q 11 q 2=121 c 2$
Or q2 $=11 \mathrm{c} 2$
11 divides q2 Hence 11 divides q
From (1) and (2) p and q have a common factor 11 which contradicts our assumption. $\sqrt{11}$ is irrational

OR

Let $2 \sqrt{3}-7$ is rational
$\therefore 2 \sqrt{3}-7=\frac{p}{q}$
$\sqrt{3}=\frac{p+7 q}{2 q}$

Since p and q are integer $\frac{p+7 q}{2 q}$ is rational
$\therefore \sqrt{3}$ is rational
But we have that $\sqrt{3}$ is irrational
\therefore our assumption is wrong. Hence $2 \sqrt{3}-7$ is irrational.

20]

Class Interval	Frequency	
$0-20$	7	7
$20-40$	8	15
$40-60$	12	27
$60-80$	5	37
$80-100$	50	50
$100-120$	Total	

$\frac{N}{2}=\frac{50}{2}=25$

Median class 40-60
$\ell=40, \mathrm{f}=12 \mathrm{CF}=15 \mathrm{~h}=20$
Median $=\ell_{+}\left(\frac{\frac{N}{2}-C F}{\mathrm{f}}\right) \mathrm{h}$

$$
=40+\left(\frac{25-15}{12}\right) 20
$$

Submitted by student /visitor Download from: http://jsuniltutorial.weebly.com/

$$
\begin{aligned}
& =40+\left(\frac{25-15}{12}\right) 20 \\
& =40+\frac{200}{12}=56.7=56.7
\end{aligned}
$$

OR

Age (in Years)	No. of people fi	Value xi	fixi
$0-20$	15	10	150
$20-40$	$f 1$	30	$30 f 1$
$40-60$	21	50	1050
$60-80$	f2	70	$70 f 2$
$80-100$	17	90	1530
Total	100		$2730+30 f 1+70 \mathrm{f} 2$

$$
53+f 1+f 2=100 \Rightarrow f 1+f 2=47 \ldots(1)
$$

$$
53=\frac{2730+30 \mathrm{f} 1+70 \mathrm{f} 2}{100}
$$

$$
5300-2730=30 f 1+70 f 2
$$

$$
30 f 1+70 f 2=2570
$$

$$
\text { Or } 3 f 1+7 f 2=257 \ldots \text {...(2) }
$$

$$
\begin{array}{r}
4 \mathrm{f} 2=116 \\
\Rightarrow \mathrm{f} 2=\frac{116}{4}=29
\end{array}
$$

$$
f 1+f 2=47
$$

$$
\mathrm{f} 2=47-29=18
$$

21] $\ln \triangle \mathrm{ABC}$ and $\triangle \mathrm{DAC}$
$\angle \mathrm{BAC}=\angle \mathrm{ADC}$
$\angle \mathrm{C}=\angle \mathrm{C}$
$\triangle A B C \sim \triangle D A C(A A)$

$$
\frac{C B}{C A}=\frac{C A}{C D}
$$

$$
\Rightarrow \mathrm{CA}^{2}=\mathrm{CB} \times \mathrm{CD}
$$

11|Page
22]

$$
\begin{aligned}
& \quad \frac{1+\frac{1}{\cos A}}{\frac{1}{\cos A}}=\frac{(\cos A+1) \cos A}{\cos A} \\
& \text { LHS }= \\
& =1+\cos A \\
& = \\
& =\frac{(1+\cos A)(1-\cos A)}{1-\cos A} \\
& = \\
& 1-\cos ^{2} A \\
& =\cos A \\
& 1-\cos A
\end{aligned}
$$

$$
3 \tan 35^{\circ} \cot \left(90^{\circ}-55^{\circ}\right) \tan 40^{\circ} \cot \left(90^{\circ}-50^{\circ}\right)-\frac{1}{2}(\sqrt{3})^{2}
$$

$$
4\left(\cos ^{2} 39^{\circ}\right)
$$

OR

OR

$$
=\frac{3-\frac{3}{2}}{4}=\frac{6-8}{8}=\frac{3}{8}
$$

23]

$$
\begin{aligned}
& p(x)=x 3-3 x 2+x+2 \\
& g(x)=? \\
& q(x)=x-2 \quad r(x)=-2 x+4 \\
& p(x)=g(x)+r(x) \\
& x 3-3 x 2+x+2=g(x)(x-2)-2 x+4
\end{aligned}
$$

$$
g(x)=\frac{x^{3}-3 x^{2}+x+2+2 x-4}{x-2}
$$

$$
=\frac{x^{3}-3 x^{2}+3 x-2}{x-2}
$$

$$
=x 2-x+1
$$

24] The system has infinitely many solutions:

$$
\begin{aligned}
& \Rightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
& \Rightarrow \frac{2}{a-b}=\frac{3}{a_{(1)}+b}=\frac{7}{3 a+\frac{b}{(3)}-2}
\end{aligned}
$$

Equating (1) and (2), we get $\mathrm{a}=5 \mathrm{~b}$
Equating (2) and (3), we get $2 \mathrm{a}-4 \mathrm{~b}=6$

On solving, we get $b=1$ and $a=5$.

25] If a and b are one two positive integers. Then $a=b q+r, 0 \leq r \leq b$ Let $b=3$ Therefore, $r=0,1,2$ Therefore, a $=3 q$ or $a=3 q+1$ or $a=3 q+2$

If $a=3 q a 2=9 q 2=3(3 q 2)=3 m$ or where $m=3 q 2 a=3 q+1$
$a 2=9 q 2+6 q+1=3(3 q 2+2 q)+1=3 m+1$ where $m=3 q 2+2 q$ or $a=3 q+2 a 2=9 q 2+12 q+4=3(3 q 2+$ $4 q+1)+1$
$=3 m+1$, where $m 3 q 2+4 q+1$
Therefore, the squares of any positive integer is either of the form $3 m$ or $3 m+1$.

26]

Cl	$1-4$	$4-7$	$7-10$	$10-13$	$13-16$	$16-19$
fi	6	30	40	16	4	4
xi	2.5	5.5	8.5	11.5	14.5	17.5

Average most suitable here is the Mode because we are interested in knowing the length of surname for maximum no. of people

Since the maximum frequency is 40 and it lies in the class interval 7-10.
Therefore, modal class $=7-10$
$?=7, h=3, f 0=30, f 1=40, f 2=16$
Mode $=\ell+\left(\frac{\mathrm{f}_{1}-\mathrm{f}_{0}}{2 \mathrm{f}_{1}-\mathrm{f}_{0}-\mathrm{f}_{2}}\right) \times \mathrm{h}$

$$
\begin{aligned}
& =7+\left(\frac{40-30}{2 \times 40-30-16}\right) \times 3 \\
& =7+.88=7.88 \text { years(approx.) }
\end{aligned}
$$

27]

$$
\begin{aligned}
& \text { LHS }= \frac{\frac{\sin \theta}{1-\frac{\cos \theta}{\sin \theta}}+\frac{\cos \theta}{\frac{\sin \theta}{1-\frac{\sin \theta}{\cos \theta}}=\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}}+\frac{\cos ^{2} \theta}{\sin \theta(\cos \theta-\sin \theta)}}{} \\
&=\frac{\sin ^{3} \theta-\cos ^{3} \theta}{\sin \theta \cos \theta(\sin \theta-\cos \theta)} \\
&=\frac{(\sin \theta-\cos \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta+\sin \theta \cos \theta\right)}{\sin \theta \cos \theta(\sin \theta-\cos \theta)} \\
&=\frac{\sin ^{2} \theta}{\sin \theta \cos \theta}+\frac{\cos ^{2} \theta}{\sin \theta \cos \theta}+\frac{\sin \theta \cos \theta}{\sin \theta \cos \theta}=\tan ?+\cot ?+1=\text { RHS }
\end{aligned}
$$

OR
LHS $=(\operatorname{cosec} A-\sin A)(\sec A-\cos A)(\tan A+\cot A)$

$$
\begin{aligned}
& =\left(\frac{1}{\sin A}-\sin A\right)\left(\frac{1}{\cos A}-\cos A\right)\left(\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}\right) \\
& =\left(\frac{1-\sin ^{2} A}{\sin A}\right) \times\left(\frac{1-\cos ^{2} A}{\cos A}\right) \times\left(\frac{\sin ^{2} A+\cos ^{2} A}{\cos A \cdot \sin A}\right) \\
& =\frac{\cos ^{2} A}{\cos A} \times \frac{\sin ^{2} A}{\cos A} \times \frac{1}{\cos A \cdot \sin A} \\
& =1 \\
& =\text { RHS }
\end{aligned}
$$

28] Basic proportionality theorem
Statement If a line is drawn parallel of one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

Given:A triangle $A B C$ in which a line parallel to side $B C$ intersects other two sides $A B$ and $A C$ at D and E respectively (see fig.)

To prove that $\frac{A D}{B D}=\frac{A E}{E C}$.
Construction: Let us join BE and CD and then draw $\mathrm{DM} \perp \mathrm{AC}$ and $\mathrm{EN} \perp \mathrm{AB}$.
Proof:
Now, area of $\triangle A D E\left(=\frac{1}{2}\right.$ base \times height $)=\frac{1}{2} \mathrm{AD} \times \mathrm{EN}$.
Note that \triangle BDE and DEC are on the same base DE and between the same parallels $B C$ and $D E$.
So, $\operatorname{ar}($ BDE $)=\operatorname{ar}($ DEG $)$
Therefore, from (1), (2) and (3), we have :

$$
\frac{A D}{D B}=\frac{A E}{E C} \text { Hence proved. }
$$

OR
Pythagoras Theorem : Statement:In a right angled triangle,the square of the hypotenuse is equal to the sum Submitted by student/visitor Download from: $\underline{\text { http:///isuniltutorial.weebly.com/ }}$

4 | Page
of squares of the other two sides.
Given: A right triangle $A B C$ right angled at B.
To prove: that $\mathrm{AC2}=\mathrm{AB2}+\mathrm{BC} 2$
Construction:Let us draw $B D \perp A C$ (See fig.)

Proof:
Now, \triangle ADB $\sim \Delta \mathrm{ABC}$
(Using Theorem: If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse ,then triangles on both sides of the perpendicular are similar to the whole triangle and to each other)

So, $\frac{A D}{A B}=\frac{A B}{A C}$
(Sides are proportional)
Or, $A D . A C=A B 2$
Also, $\triangle \mathrm{BDC} \sim \triangle \mathrm{ABC}$
(Theorem)
So, $\frac{C D}{B C}=\frac{B C}{A C}$
Or, $C D . A C=B C 2$
Adding (1) and (2),
$A D \cdot A C+C D \cdot A C=A B 2+B C 2$
OR, $\quad A C(A D+C D)=A B 2+B C 2$
$O R, \quad A C . A C=A B 2+B C 2$
OR, $\quad A C 2=A B 2+B C 2$
Hence proved.

29]

$$
\begin{aligned}
& m 2-n 2=(m+n)(m-n) \\
& =[(\tan \theta+\sin \theta)+\tan \theta-\sin \theta] \\
& =2 \tan \theta \cdot 2 \sin \theta
\end{aligned}
$$

$=4 \tan \theta \cdot \sin \theta$
$=4 \sqrt{\tan ^{2} \theta \sin ^{2} \theta}$
$=4 \sqrt{\left(\sec ^{2} \theta-1\right) \sin ^{2} \theta}$
$=4 \sqrt{\sec ^{2} \theta-\sin ^{2} \theta}$
$=4 \sqrt{\tan ^{2} \theta-\sin ^{2} \theta}$
$=4 \sqrt{m n}$
30] Let $\mathrm{p}(\mathrm{x})=\mathrm{x} 3-6 \mathrm{x} 2-15 \mathrm{x}+80$
Let say that we subtracted $\mathrm{ax}+\mathrm{b}$ so that it is exactly divisible by
$x 2+x-12$
$s(x)=x 3-6 x 2-15 x+80-(a x+b)$
$=x 3-6 \times 2-(15+a) x+(80-b)$
Dividend $=$ Divisor \times Quotient + Remainder
But remainder $=0$
$\therefore \quad$ Dividend $=$ Divisor \times Quotient
$s(x)=(x 2+x-12) x$ quotient
$s(x)=x 3-6 x 2-(15+a) x+(80-b)$
$x(x 2+x-12)-7(x 2+x-12)$
$=x 3+x 2-7 x 2-12 x-7 x+84$
$=x 3-6 x 2-19 x+84$
Hence, $x 3-6 \times 2-19 x+84=x 3-6 x 2-(15+a) x+(80-b)$
$-15-a=-19 \quad \Rightarrow a=+4$
and $\quad 80-b=84 \quad \Rightarrow b=-4$
Hence if in $p(x)$ we subtracted $4 x-4$ then it is exactly divisible by $\mathrm{x} 2+\mathrm{x}-12$.

We have to solve the pair of equations graphically

16 | Page
$2 x+3 y=11 \ldots$ (1)
$2 x-4 y=-24 \ldots$ (2)

For (1)

x	1	4	-2
y	3	1	5

For (2)

x	-12	0	-10
y	0	6	1

point of intersection $x=-2,=5$
The triangle formed is shaded as $\Delta A B C$ coordinates are
$A(-2,5) B(-12,0) C(5.5,0)$.

32]

Class Interval	Frequency
$0-15$	6
$15-30$	7
$30-45$	f 1
$45-60$	15
$60-75$	10
$75-90$	f 2
Total	51

Submitted by student /visitor Download from: http://jsuniltutorial.weebly.com/

17 | Page

Mode = 55 (Given)
\therefore Modal Class 45-60
$\ell=45, \mathrm{fo}=\mathrm{f} 1$ and $\mathrm{f} 1=15$
$\mathrm{f} 2=10 \mathrm{~h}=15$
$38+f 1+f 2=51$
$\mathrm{f} 1+\mathrm{f} 2=51-38$
$\mathrm{f} 1+\mathrm{f} 2=13$
$55=45+\left[\frac{(15-\mathrm{f} 1)}{30-\mathrm{f1}-10}\right] \times 15$
$10=\frac{(15-\mathrm{f} 1) 15}{20-\mathrm{f} 1}$
200-f1 = 225-15f1
$5 f 1=25$
$\mathrm{f} 1=5$
f1 1 f2=13
$\Rightarrow f 2=13-5=8$

The missing frequencies are 5 and 8.

33]

two similar triangles is equal to the square of the ratio of their corresponding sides.
Given: ?ABC ~ ?PQR To Prove: $\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{PR}^{2}}$ Construction: Draw $A D ? B C$ and PS?QR $\frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})}=\frac{\frac{1}{2} \times B C \times A D}{\frac{1}{2} \times Q R \times P S}=\frac{B C}{Q R} \times \frac{A D}{P S}$
?PSQ (AA) Therefore, $\frac{A D}{P S}=\frac{A B}{P Q}$
Therefore, $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}$
Therefore, $\frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})}=\frac{\mathrm{BC}}{\mathrm{QR}} \times \frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}$

$$
\frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})}=\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{PR}^{2}}
$$

34]

$$
=\sec \theta-(\sec \theta-\tan \theta)=
$$

$$
\begin{aligned}
& \text { LHS }=\frac{1}{\sec \theta-\tan \theta}-\frac{1}{\cos \theta} \\
& =\frac{\sec ^{2} \theta-\tan ^{2} \theta}{\sec \theta-\tan \theta}-\sec \theta \\
& =\frac{(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)}{(\sec \theta-\tan \theta)}-\sec \theta \\
& =(\sec \theta+\tan \theta)-\sec \theta=\tan \theta \\
& \text { RHS }=\frac{1}{\cos \theta}-\frac{1}{\sec \theta+\tan \theta} \\
& =\sec \theta-\frac{\sec ^{2} \theta-\tan ^{2} \theta}{\sec \theta+\tan \theta} \\
& =\sec \theta-\frac{(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)}{(\sec \theta+\tan \theta)}
\end{aligned}
$$

$\tan \theta$
Hence, LHS = RHS.

