Paper: 02 Class-X-Math: Summative Assessment - I

Total marks of the paper: 90
Total time of the paper:
3.5 hrs

Questions:

1] The relation connecting the measures of central tendencies is
[Marks:1]
A. Mode $=3$ median +2 mean
B. $M o d e=2$ median +3 mean
C. $M o d e=2$ median -3 mean
D. Mode $=3$ median -2 mean

2] IF α and ${ }^{\beta}$ are the zeroes of the polynomial $5 x 2-7 x+2$, then sum of their reciprocals is:
A. $\frac{14}{25}$
B. $\frac{2}{5}$
C. $\frac{7}{5}$
D. $\frac{7}{2}$

3] The value of $\sin 2300-\cos 230$ o is :
A. $\frac{3}{4}$
B. $\frac{3}{2}$
C. $\frac{\sqrt{3}}{2}$
D. $-\frac{1}{2}$

4] A rational number can be expressed as a terminating decimal if the denominator has factors.
[Marks:1]
A. 3 or 5
B. 2 or 3
C. 2,3 or 5
D. 2 or 5

5] Which of the following cannot be the sides a right triangle?
[Marks:1]
A. $400 \mathrm{~mm}, 300 \mathrm{~mm}, 500 \mathrm{~mm}$
B. $2 \mathrm{~cm}, 1 \mathrm{~cm}, \sqrt{5} \mathrm{~cm}$
C. $\quad 9 \mathrm{~cm}, 15 \mathrm{~cm}, 12 \mathrm{~cm}$
D. $\quad 9 \mathrm{~cm} 5 \mathrm{~cm} \mathrm{7cm}$

6] Which of the following pair of linear equations is inconsistent?
[Marks:1]
A. $\quad 9 x-8 y=17 ; 18 x-16 y=34$
B. $x-2 y=6 ; 2 x+3 y=4$
C. $\quad 5 x-3 y=11 ; 7 x+2 y=13$
D. $2 x+3 y=7 ; 4 x+6 y=5$

7] If one root of the equation $(p+q) 2 \times 2-2(p+q) x+k=0$

2 | P a g e

JSMNVETMTOTR AL Chase excelecuce

is $\frac{5}{p+q}$, then k is
A. 15
B. 50
C. -50
D. -15

8] If $\tan 2 A=\cot (A-180)$, then the value of A is
[Marks:1]
A. 270
B. 240
C. 180
D. 360

9] The HCF and LCM of two numbers are 9 and 90 respectively. If one number is 18 , find the other.
10] In the following distribution:

Monthly income range (In Rs.)	No. of families
Income more than Rs 10000	100
Income more than Rs 13000	85
Income more than Rs 16000	69
Income more than Rs 19000	50
Income more than Rs 22000	33
Income more than Rs 25000	15

Find the no of families having income range (In Rs.) 16000-19000?
11]
Prove that $1+\frac{\cot ^{2} \theta}{1+\operatorname{cosec} \theta}=\frac{1}{\sin \theta}$
12] If fig. If $\angle A=\angle B$ and $A D=B E$ show that $D E \| A B$ in $\triangle A B C$.

13] From a quadratic polynomial whose one of the zeroes is - 15 and sum of the zeroes is 42 . OR
If α and β are the zeroes of the polynomial $2 x 2-4 x+5$, then find the value of $\alpha^{2}+\beta^{2}$
14] For what value of P will the following system of equations have no solution (2p-1)x+(p-1) y=2p
15] Find the mode of the following data:

Class	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Frequency	7	12	20	11	8

16] In fig. $P Q R$ and $S Q R$ are two triangles on the same base $Q R$. If PS intersect $Q R$ at O then show that $\frac{\operatorname{ar}(\mathrm{PQR})}{\operatorname{ar}(\mathrm{SQR})}=\frac{\mathrm{PO}}{\mathrm{SO}}$.

${ }^{17]}$ Prove that $5+7 \sqrt{3}$ is an irrational number.

Prove that $\sqrt{7}$ is an irrational number.
18] Prove that:
$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$
19] Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder.
[Marks:3]

$$
p(x)=x^{3}-3 x^{2}+5 x-3, \quad g(x)=x^{2}-2
$$

20] Find the mean of the following data:

Class Interval	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$
Frequency	2	3	8	6	6	3	2

OR
Find the median daily expenses from the following data.

Daily Expenses (in Rs.)	No. of families
$20-40$	6
$40-60$	9
$60-80$	11
$80-100$	14
$100-120$	20
$120-140$	15
$140-160$	10
$160-80$	8
$180-200$	7
Total	100

21] In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $3 B D=B C$. Prove that 9AD2 $=7 A B 2$.
22] Ritu can row downstream 20 km in 2 hours, and upstream 4 km in 2 hours. Find her speed of rowing in still water and the speed of the current.
OR
Roohi travels 300 km to her home partly by train and partly by bus. She takes 4 hours if she travels 60 km by train and remaining by bus. If she travels 100 km by train and the remaining by bus, she takes 10 minutes longer. Find the speed of the train and the bus separately.

23] If $\sin \sigma \psi \mu \beta \mathrm{o} \lambda(\forall \theta \forall, \forall \theta \forall) \theta+\cos \sigma \psi \mu \beta \mathrm{o} \lambda(\forall \theta \forall, \forall \theta \forall) \theta=\mathrm{m}$ and $\sec \sigma \psi \mu \beta \mathrm{o} \lambda(\forall \theta \forall, \forall \theta \forall) \theta+\operatorname{cosec}$ $\sigma \psi \mu \beta o \lambda(\forall \theta \forall, \forall \theta \forall) \theta=n$, prove that $n\left(m^{2}-1\right)=2 m$.
[Marks:3]

4] Find the cost of a jacket if the cost of two T-shirts and one jacket is Rs 625 and three T-shirts and two jackets together costs Rs 1125.
25] Show that any positive even integer is of the form $6 m, 6 m+2$ or $6 m+4$. Where m is some integer.
[Marks:4]
26] The mean of the following distribution is 62.8 and the sum of the sum of all frequencies is 50 .
Compute the missing frequencies f 1 and f 2.

Class	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	$100-120$	Total
Frequency	5	f 1	10	f 2	7	8	50

27]
In fig, $P A Q B$ and $R C$ are perpendiculars to $A C$. Prove that $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$

28] Show that $q(p 2-1)=2 p$, if $\sin ^{\theta}+\cos ^{\theta}=p$ and $\sec ^{\theta}+\operatorname{cosec}^{\theta}=q$.
${ }^{29]}$ Find the other zeroes of the polynomial $2 x 4-3 x 3-3 x 2+6 x-2$ if $-\sqrt{2}$ and $\sqrt{2}$ are the zeroes of the given polynomial.
30] Prove that:

4 | Page
$\frac{1+\cos \theta+\sin \theta}{1+\cos \theta-\sin \theta}=\frac{1+\sin \theta}{\cos \theta}$
OR
Without using trigonometric tables, evaluate

$$
\frac{\cos \operatorname{ec}^{2}\left(90^{\circ}-\theta\right)-\tan ^{2} \theta}{4\left(\cos ^{2} 48^{\circ}+\cos ^{2} 42^{\circ}\right)}-\frac{2 \tan ^{2} 30^{\circ} \sec ^{2} 52^{\circ} \sin ^{2} 38^{\circ}}{\tan ^{2} 20^{\circ}-\operatorname{cosec} 270^{\circ}}
$$

31] State and prove Pythagoras theorem.
OR
Prove that the ratio of areas of two similar triangles is equal to the ratio of the squares of the
[Marks:4] corresponding sides.
32] During the medical check-up of 35 students of a class, their weights were recorded as follows:

Weight (in kg)	Number of students
Less than 38	0
Less than 40	3
Less than 42	5
Less than 44	9
Less than 46	14
Less than 48	28
Less than 50	32
Less than 52	35

Draw a less than type ogive for the given data. Hence obtain the median weight from the graph.
33] Draw the graphs of the equations $x-y+1=0$ and $3 x+2 y-12$
$=0$. Determine the coordinates of the vertices of the triangle formed
by these lines and the x-axis, and shade the triangular region.
34] Evaluate:
$\sin \left(50^{\circ}+\theta\right)-\cos \left(40^{\circ}-\theta\right)+\frac{1}{4} \cot ^{2} 30^{\circ}$
$+\frac{3 \tan 45^{\circ} \tan 20^{\circ} \tan 40^{\circ} \tan 50^{\circ} \tan 70^{\circ}}{5}+\frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17+\cos ^{2} 73^{\circ}}$

Solutions paper set -2:

1] Mode $=3$ median -2 mean

2] $\quad \alpha$ and β are the roots of the equation $5 x^{2}-7 x+2$
Then, $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha, \beta}=\frac{7}{2}$

3]

$$
\sin ^{2} 30^{\circ}-\cos ^{2} 30^{\circ}=\frac{1^{2}}{2}-\frac{\sqrt{3}^{2}}{2}=\frac{1-3}{4}=\frac{-1}{2}
$$

4] A rational number can be expressed as a terminating decimal if the denominator has factors 2 or 5 .

5] $\quad 9 \mathrm{~cm} 5 \mathrm{~cm} 7 \mathrm{~cm}$ cannot form the sides of a right triangle as the Pythagoras theorem is not satisfied in this case.

5 | P a g e

6] For the system of equations: $2 x+3 y=7$
$4 x+6 y=5 w e$ have $\frac{2}{4}=\frac{3}{6} \neq \frac{7}{5}$
Since $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$ is the condition for no solution and hence inconsistent system of equations.

Since $\frac{5}{p+q}$ is a root of the equation $(p+q) 2 \times 2-2(p+q) x+k=0$ So, $(p+q) 2\left(\frac{5}{p+q}\right)^{2}-2(p+q)$.
$\frac{5}{p+q}+k=0 \Rightarrow k=-15$

8] $\quad \operatorname{Tan} 2 A=\operatorname{Cot}\left(A-18^{\circ}\right)=\operatorname{Tan}\left(90^{\circ}-A+18^{\circ}\right)$
$\Rightarrow 2 A=\left(90^{\circ}-A+18^{\circ}\right)=108^{\circ}-A$
$\Rightarrow 3 A=108^{\circ} \Rightarrow A=\frac{108^{\circ}}{3}=36^{\circ}$

9] $\quad \mathrm{HCF} \times \mathrm{LCM}=$ Product of the number
$9 \times 90=18 \times x$
$x=\frac{9 \times 90}{18}=45$

10]

Monthly income range (In Rs.)	No. of families
$10000-13000$	5
$13000-16000$	16
$16000-19000$	19
$19000-22000$	17
$22000-25000$	18
$25000-28000$	15

No. of families having income range (in Rs.) 16000-19000 is 19. From the graph it is clear that median is 4.

11]

$$
\begin{aligned}
& \text { LHS }=1+\frac{\operatorname{cosec}^{2} \theta-1}{1+\operatorname{cosec} \theta} \\
& =1+\frac{(\operatorname{cosec} \theta+1)(\operatorname{cosec} \theta-1)}{(1+\operatorname{cosec} \theta)} \\
& =1+\operatorname{cosec}^{\theta}-1=\operatorname{cosec}^{\theta}=\frac{1}{\sin \theta}=\text { RHS }
\end{aligned}
$$

Since $\angle A=\angle B, A C=B C \ldots$

6 | Page

Also $A D=B E$... (2)
Subtracting (2) from (1),
$\Rightarrow \mathrm{AC}-\mathrm{AD}=\mathrm{BC}-\mathrm{BE}$
$\Rightarrow \mathrm{DC}=\mathrm{EC}$
From (2) and (3), we have
$\frac{C D}{A D}=\frac{C E}{B E}$

Therefore, DE || AB by converse of BPT.

13] One of the zero $=-15$
Sum of the zeroes $=42$
\therefore Other zero $=42+15=57$
\therefore Product of the zeroes $=57 \times-15=855$
\therefore The quadratic polynomial is $\mathrm{x} 2-42 \mathrm{x}-855$

OR
Let $\mathrm{p}(\mathrm{x})=2 \mathrm{x} 2-4 \mathrm{x}+5$
$\alpha+\beta=\frac{-b}{a}=\frac{4}{3}=2$
$\alpha \beta=\frac{c}{a}=\frac{5}{2}$
$?^{2}+?^{2}=(?+?)^{2}-2 ? ?$
Substituting the values, we get $=?^{2}+?^{2}=-1$

14] For no solution:

$$
\frac{a 1}{a 2}=\frac{b 1}{b 2} \neq \frac{c 1}{c 2} \Rightarrow \frac{3}{2 p-1}=\frac{1}{p-1} \Rightarrow 3 p-3=2 p-1 \Rightarrow_{p=2}
$$

15] Modal class - 30-40
$\ell=30 \mathrm{fo}=12 \mathrm{fi}=20 \mathrm{f} 2=11 \mathrm{~h}=10$
Mode $=\ell_{+}\left(\frac{\mathrm{fi}-\mathrm{fo}}{2 \mathrm{fi}-\mathrm{fo}-\mathrm{f} 2}\right) \mathrm{h} \quad=30+\left(\frac{20-12}{40-12-11}\right) 10=30+\frac{80}{17}=34.7$

16]
Construction: Draw PA $\perp \mathrm{QR}$ and $\mathrm{SB} \perp \mathrm{GR}$

We have,
$\frac{\operatorname{ar}(\mathrm{PQR})}{\operatorname{ar}(\mathrm{SQR})}=\frac{\frac{1}{2} \times \mathrm{QR} \times \mathrm{AP}}{\frac{1}{2} \times \mathrm{QR} \times \mathrm{BS}}=\frac{\mathrm{AP}}{\mathrm{BS}}$
Now $\triangle \mathrm{APO} \sim \triangle \mathrm{BSO} \quad$ (By $A A$ similarity)
(As one angle is 90 degrees and one is vertically opposite angles) $\therefore \frac{\mathrm{AP}}{\mathrm{BS}}=\frac{\mathrm{PO}}{50}$
From (1) and (2), we get $\therefore \frac{\operatorname{ar}(\mathrm{PQR})}{\mathrm{ar}(S Q R)}=\frac{\mathrm{PO}}{\mathrm{SO}}$

17]
Let $5+7 \sqrt{3}$ is rational number
$5+7 \sqrt{3}=\frac{P}{q}$
$7 \sqrt{3}=\frac{p}{q}-5$
$\sqrt{3}=\frac{p-5 q}{7 q}$

Since p and q are integers
$\frac{p-5 q}{7}$
7 a rational number
$\sqrt{3}$
is rational

But we know that $\sqrt{3}$ is rational
\therefore Out assumption is wrong
$\therefore 5+7 \sqrt{3}$ is irrational.

Let $\sqrt{7}$ be a rational number

8 | P a g e

Let $\sqrt{7}=p / q$ where $q \neq 0, p$ and q are integers and coprime.
$\sqrt{7}=\frac{q}{2}=p$
$7 q 2=p 2$

7 divides p
Let $p=7 m$
$7 q 2=49 m 2$
$\mathrm{Q} 2=7 \mathrm{~m} 2$
$\therefore 7$ divides q2
$\therefore 7$ divides q
$\therefore 7$ divides p and q both.

Which is a contradiction for the that p and q are co-prime.

18]

$$
\begin{aligned}
& \text { LHS }=\left(\frac{1}{\sin A}-\sin A\right)\left(\frac{1}{\cos A}-\cos A\right) \\
& =\frac{1-\sin ^{2} A}{\sin A} \times \frac{1-\cos ^{2} A}{\cos A}=\sin A \cos A \\
& \text { RHS }=\frac{1}{\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}}=\frac{\sin A \cos A}{\sin ^{2} A+\cos ^{2} A}
\end{aligned}=\sin A \cos A .
$$

Hence, LHS = RHS .

19]

$$
p(x)=x^{3}-3 x^{2}+5 x-3, \quad g(x)=x^{2}-2
$$

The polynomial $p(x)$ can be divided by the polynomial $g(x)$ as follows:

$$
\text { Quotient }=x-3 \quad \text { Remainder }=7 x-9
$$

$$
\begin{aligned}
& x ^ { 2 } - 2 \longdiv { \frac { x - 3 } { x ^ { 3 } - 3 x ^ { 2 } + 5 x - 3 } } \frac { x ^ { 3 } - 2 x } { } \\
& \frac{-}{-3 x^{2}+7 x-3} \\
& -3 x^{2}+6 \\
& + \\
& 7 x-9
\end{aligned}
$$

20]

Class Interval	Fi frequency	Mid value xi	Fixi
$30-40$	2	35	70
$40-50$	3	45	135
$50-60$	6	55	440
$60-70$	3	65	390
$70-80$	2	95	255
$80-90$	30		190
$90-100$	Total	6	1930

Mean $=\frac{\sum \mathrm{fixi}}{\sum \mathrm{fi}}=\frac{1930}{30}=64.3$

OR

Daily expenses (in Rs)	No, of families	C.F
$20-40$	6	6
$40-60$	9	15
$60-80$	14	26
$80-100$	15	40
$100-120$	10	60
$120-140$	8	85
$140-160$	7	100
$160-180$	100	
$180-200$	Total	

$\frac{N}{2}=\frac{100}{2}=50$
Median class - 100-120
$f=20 \quad c f=40$
$h=20$
$I=100$

10 | Page
JSMNVITMTORTAL chase Excelecine

Median $=\quad \ell+\left(\frac{\frac{N}{2}-c f}{f}\right) h=100+\left(\frac{50-40}{20}\right) 20$

$$
=100+10=110
$$

21]

Construction: - Draw $\mathrm{AE} \perp \mathrm{BC}$
In right triangle AEB
$A B 2=A E 2+B E 2$
$=A E 2+(B D+D E) 2$
$=A C 2-D E 2+B D 2+D E 2+2 B D . D E=A D 2+{ }^{\frac{1}{9}} B C 2+2 \times \frac{1}{3} B C \times{ }^{\frac{1}{6}} B C=A D 2+{ }^{\frac{2}{9}} B C 2$
$9 A B 2=9 A D 2+2 B C 2 \quad 9 A B 2-2 A B 2=9 A D 2 \quad \because A B=B C \quad$ Or 9AD2 $=7 A B 2$
22] Let the speed of Ritu in still water and the speed of stream be $x \mathrm{~km} / \mathrm{h}$ and $\mathrm{ykm} / \mathrm{h}$ respectively.
Speed of Ritu while rowing upstream $=(x-y)_{\mathrm{km} / \mathrm{h}}$
Speed of Ritu while rowing downstream $=(x+y)_{\mathrm{km} / \mathrm{h}}$
According to the question,

$$
\begin{align*}
& 2(x+y)=20 \\
& \Rightarrow x+y=10 \tag{1}\\
& 2(x-y)=4 \\
& \Rightarrow x-y=2 \tag{2}
\end{align*}
$$

Adding equations (1) and (2), we obtain: $2 \mathrm{x}=12 \mathrm{~s} 0, \mathrm{x}=6$
Putting the value of x in equation (1), we obtain: $\quad y=4$
Thus, Ritu's speed in still water is $6 \mathrm{~km} / \mathrm{h}$ and the speed of the current is $4 \mathrm{~km} / \mathrm{h}$.
OR

Submitted by student /visitor Download from: http://isuniltutorial.weebly.com/

11 Page
Let the speed of train and bus be $u \mathrm{~km} / \mathrm{h}$ and $\mathrm{vkm} / \mathrm{h}$ respectively.
According to the question,
$\frac{60}{u}+\frac{240}{v}=4$
$\frac{100}{u}+\frac{200}{v}=\frac{25}{6}$
Let $\frac{1}{u}=p$ and $\frac{1}{v}=q$
The given equations reduce to:
$60 p+240 q=4$
$100 p+200 q=\frac{25}{6}$
$600 p+1200 q=25$
Multiplying equation (3) by 10, we obtain:
$600 p+2400 q=40$
Subtracting equation (4) from equation (5), we obtain:
$1200 q=15$
$q=\frac{15}{1200}=\frac{1}{80}$
Substituting the value of q in equation (3), we obtain:

$$
60 p+3=4
$$

$60 p=1$
$p=\frac{1}{60}$
$p=\frac{1}{u}=\frac{1}{60}, q=\frac{1}{v}=\frac{1}{80}$
$u=60 \mathrm{~km} / \mathrm{h}, v=80 \mathrm{~km} / \mathrm{h}$
Thus, the speed of train and the speed of bus are $60 \mathrm{~km} / \mathrm{h}$ and $80 \mathrm{~km} / \mathrm{h}$ respectively.
23] Given: sin symbol("q", "?")q + cos symbol("q", "?")q = m and sec symbol("q", "?")q+cosec symbol("q", "?") $q=n$

Consider,
L.H.S. $=n\left(m^{2}-1\right)$

Submitted by student /visitor Download from: http://jsuniltutorial.weebly.com/

12 \| age
$=(\sec \theta+\operatorname{cosec} \theta)\left[(\sin \theta+\cos \theta)^{2}-1\right]$

$$
\begin{aligned}
& =\left(\frac{1}{\cos \theta}+\frac{1}{\sin \theta}\right)\left[\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta-1\right] \\
& =\left(\frac{\cos \theta+\sin \theta}{\sin \theta \cos \theta}\right)(1+2 \sin \theta \cos \theta-1) \\
& =\frac{(\cos \theta+\sin \theta)}{\sin \theta \cos \theta}(2 \sin \theta \cos \theta) \\
& =2(\sin \theta+\cos \theta) \\
& =2 m=\text { RHS }
\end{aligned}
$$

24] Let the cost of one T-shirt be Rs x and that of one jacket be Rs y.
According to given condition
$2 x+y=625$
$3 x+2 y=1125$
Multiplying (i) by 2 we get
$4 x+2 y=1250$
Subtracting (ii) from (iii) we get,
$\mathrm{x}=125$
Substituting this value of x in (i) we get
250+y=625 symbol("Р", "?")P y=375
Therefore cost of one T-shirt is Rs 125 and the cost of one jacket is Rs 375 .
25]
Let a and b be any positive Integers
$a=b+r, 0 \leq r<b$
Let $\mathrm{b}=6$ Thes $\mathrm{r}=0,1,2,3,4,5$
Where $r=0, a=6 m+0=6 m$. which is even
Where $r=1$
$a=6 m+1$
odd
Where $\mathrm{r}=2$
Where $=3$
$a=6 m+2$
even

Where $=3$
a $-6 m+3$
odd
Where $\mathrm{r}=4$
$a=6 m+4$
even

$$
\text { Where }=5
$$

$$
a-6 m+5
$$

odd
\therefore All positive even integers are of the from $6 m, 6 m+2$ or $6 m+4$.
26]
We have
$5+f 1+10+f 2+7+8=50$
$\mathrm{f} 1+\mathrm{f} 2=20$
$\mathrm{f} 1=20-\mathrm{f} 2$

C.I	fi	Xi	fixi
$0-20$	5	10	50
$20-40$	fi	30	30 fi
$40-60$	10	50	500
$60-80$	$20-\mathrm{fi}$	70	$1400-70 \mathrm{fi}$
$80-100$	7	90	630
$100-120$	8	110	882
	$\sum \mathrm{fi}=50$		\sum fixi $=3460-40 \mathrm{fi}$

Mean $=\frac{\sum \mathrm{fixi}}{\sum \mathrm{fi}}$
$62.8=\frac{3460-40 f 1}{50}$
$\Rightarrow 3140=3460-40 \mathrm{f1}$
$\Rightarrow 40 \mathrm{f1} 1=320$
$\Rightarrow \mathrm{f} 1=8$
Therefore, $\mathrm{f} 2=20-8=12$.
27]

$$
\text { In } \triangle P A C \because Q B \| P A
$$

$$
\begin{align*}
& \triangle P A C \sim \triangle Q B C \\
& \frac{x}{z}=\frac{a+b}{b} \Rightarrow \frac{x}{z}-1=\frac{a}{b} \tag{1}
\end{align*}
$$

Similarly $\triangle \mathrm{ABC} \sim \triangle \mathrm{AQB}$

$$
\therefore \frac{y}{z}=\frac{a+b}{a}
$$

$$
\begin{equation*}
\Rightarrow \frac{y-z}{z}=\frac{b}{a} \tag{2}
\end{equation*}
$$

From (1) and (2)

$$
\frac{x-z}{z}=\frac{z}{y-z}
$$

$$
\Rightarrow x y=x z+y z
$$

Dividing by xyz

$$
\frac{1}{z}=\frac{1}{y}+\frac{1}{x}
$$

28]

$$
q=\frac{1}{\cos \theta}+\frac{1}{\sin \theta}=\frac{\sin \theta+\cos \theta}{\sin \theta \cos \theta}
$$

Consider,
$q(p 2-1)$

$$
\left.\begin{array}{l}
=\left(\frac{\sin \theta+\cos \theta}{\sin \theta \cos \theta}\right)\left[(\sin \theta+\cos \theta)^{2}-1\right] \\
=\left(\frac{\sin \theta+\cos \theta}{\sin \theta \cos \theta}\right. \\
=\left(\left[\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta-1\right]\right. \\
=\left(\frac{\sin \theta+\cos \theta}{\sin \theta+\cos \theta}\right. \\
\sin \theta \cos \theta
\end{array}\right)[1+2 \sin \theta \cos \theta-1] \quad[2 \sin \theta \cos \theta] \quad \$
$$

$$
\begin{aligned}
& =2(\sin \theta+\cos \theta) \\
& =2 p=\text { RHS }
\end{aligned}
$$

29] \quad Since $=\sqrt{2}$ and $\sqrt{2}$ are the
Zeroes of the given polynomial
$(x+\sqrt{2})(x-\sqrt{2})$ will be a factor
Or x2 = 2 will be a factor
Long division.

$$
\begin{aligned}
& x^{2}-\sqrt[2]{2 x^{4}-3 x^{2}-3 x+1} \\
& \begin{array}{r}
2 x^{4} \\
\hline
\end{array} \\
& \begin{array}{c}
x^{2} \quad-2 \\
\hline 0
\end{array}
\end{aligned}
$$

$2 x 2-3 x+1=2 x 2-2 x-2 x+1$
$=2 x(x-1)-1(x-1)$

$$
=(2 x-1)(x-1)
$$

\therefore The other zeroes are ${ }^{\frac{1}{2}}$ and 1 .
$30]$
On dividing the numerator and denominator of Its by $\cos \theta$, we get

$$
\begin{aligned}
& \text { LHS }=\frac{\sec \theta+1+\tan \theta}{\sec \theta+1-\tan \theta} \\
& =\frac{\sec \theta+\tan \theta+\left(\sec ^{2} \theta-\tan ^{2} \theta\right)}{\sec \theta+1-\tan \theta} \\
& =\frac{(\sec \theta+\tan \theta)+(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)}{\sec \theta+1-\tan \theta} \\
& =\frac{(\sec \theta+\tan \theta)(1+\sec \theta-\tan \theta)}{\sec \theta+1-\tan \theta} \\
& =\sec \theta+\tan \theta \\
& =\frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta} \\
& =\frac{1+\sin \theta}{\cos \theta}=\text { RHS }
\end{aligned}
$$

> OR

$$
\begin{aligned}
& \frac{\operatorname{cosec}\left(90^{\circ}-\theta\right)-\tan ^{2} \theta}{4\left(\cos ^{2} 48^{\circ}+\cos ^{2} 42^{\circ}\right)}-\frac{2 \tan ^{2} 30^{\circ} \sec ^{2} 52^{\circ} \sin ^{2} 38^{\circ}}{\tan ^{2} 20^{\circ}-\operatorname{cosec}^{2} 70^{\circ}} \\
& =\frac{\sec ^{2} \theta-\tan ^{2} \theta}{4\left(\sin ^{2} 42^{\circ}+\cos ^{2} 42^{\circ}\right)}-\frac{2 \times \frac{1}{3}\left(\operatorname{cosec}^{2} 38^{\circ} \cdot \sin ^{2} 38^{\circ}\right)}{\tan ^{2} 20^{\circ}-\sec ^{2} 20^{\circ}} \\
& =\frac{1}{4}+\frac{2}{3}=\frac{11}{2}
\end{aligned}
$$

31] Pythagoras Theorem: Statement: In a right angled triangle, the square of the hypotenuse is equal to the sum of squares of the other two sides.

Given: A right triangle $A B C$ right angled at B.
To prove: that $A C 2=A B 2+B C 2$
Construction: Let us draw $B D \perp$ AC (See fig.)

Proof :

Now, $\triangle \mathrm{ADB} \sim \triangle \mathrm{ABC} \quad$ (Using Theorem:If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse , then triangles on both sides of the perpendicular are similar to the whole triangle and to each other)

So, $\frac{A D}{A B}=\frac{A B}{A C}$
(Sides are proportional)
Or, $A D \cdot A C=A B 2$
Also, $\triangle \mathrm{BDC} \sim \triangle \mathrm{ABC}$
(Theorem)
So, $\frac{C D}{B C}=\frac{B C}{A C}$
Or, $C D . A C=B C 2$
Adding (1) and (2),
$A D \cdot A C+C D \cdot A C=A B 2+B C 2$
$O R, \quad A C(A D+C D)=A B 2+B C 2$
$O R, \quad A C \cdot A C=A B 2+B C 2$
$O R \quad A C 2=A B 2+B C 2$

OR
Statement:Ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

Given: Two triangles $A B C$ and $P Q R$ such that $\triangle A B C \sim \triangle P Q R$

To prove : $\frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{CA}}{\mathrm{RP}}\right)^{2}$
Proof For finding the areas of the two triangles, we draw altitudes AM and PN of the triangles.

Now,

$$
\operatorname{ar}(\mathrm{ABC})=\frac{1}{2} \mathrm{BC} \times \mathrm{AM}
$$

And

$$
\operatorname{ar}(\mathrm{PQR})=\frac{1}{2} \mathrm{QR} \times \mathrm{PN}
$$

$$
\frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})}=\frac{\frac{1}{2} \times \mathrm{BC} \times \mathrm{AM}}{\frac{1}{2} \times \mathrm{QR} \times \mathrm{PN}}=\frac{\mathrm{BC} \times \mathrm{AM}}{\mathrm{QR} \times \mathrm{PN}}
$$

Now, in $\triangle A B C$ and $\triangle P Q N$.

$$
\begin{array}{ll}
\angle \mathrm{B}=\angle \mathrm{Q} & (\mathrm{As} \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} \\
\angle \mathrm{m}=\angle \mathrm{n} & \text { (Each is of 900) } \\
\triangle \mathrm{ABM} \sim \triangle \mathrm{PQN} & \text { (AA similarity criterion) }
\end{array}
$$

And

So,

Therefore,
$\frac{\mathrm{AM}}{\mathrm{PN}}=\frac{\mathrm{AB}}{\mathrm{PQ}}$

Also,

$$
\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}
$$

So,

$$
\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{CA}}{\mathrm{RP}}
$$

Therefore,

$$
\frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})}=\frac{\mathrm{AB}}{\mathrm{PQ}} \times \frac{\mathrm{AM}}{\mathrm{PN}} \quad[\text { from (1) and (3)] }
$$

$$
=\frac{\mathrm{AB}}{\mathrm{PQ}} \times \frac{\mathrm{AB}}{\mathrm{PQ}}
$$

$$
=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}
$$

Now using (3), we get

$$
\frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{CA}}{\mathrm{RP}}\right)^{2}
$$

32] The given cumulative frequency distributions of less than type is -

Weight (in kg) upper class limits	Number of students (cumulative frequency)
Less than 38	0
Less than 40	3
Less than 42	5
Less than 44	9
Less than 46	14
Less than 48	28
Less than 50	32
Less than 52	35

Now taking upper class limits on x-axis and their respective cumulative frequency on y-axis we may draw its ogive as following -

Now mark the point A whose ordinate is 17.5 its x-coordinate is 46.5 . So median of this data is 46.5 .

33] $x-y+1=0 \operatorname{symbol}(" \mathrm{P} ", ~ " ? ") P x=y-1$

Three solutions of this equation can be written in a table as follows:

x	0	1	2
y	1	2	3

$3 x+2 y-12=0$
$x=\frac{12-2 y}{3}$

19 | Page

Three solutions of this equation can be written in a table as follows:

x	4	2	0
y	0	3	6

Now, these equations can be drawn on a graph. The triangle formed by the two lines and the x -axis can be shown by the shaded part as:

34] We have

$$
\begin{aligned}
& \sin \left(50^{\circ}+\theta\right)-\cos \left(40^{\circ}-\theta\right)+\frac{1}{4} \cot ^{2} 30^{\circ} \\
& +\frac{3 \tan 45^{\circ} \tan 20^{\circ} \tan 40^{\circ} \tan 50^{\circ} \tan 70^{\circ}}{5}+\frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17+\cos ^{2} 73^{\circ}}
\end{aligned}
$$

$$
=\cos (90 o-50 o-\theta)-\cos (40 o-\theta)+\frac{1}{4}(\sqrt{3})^{2}
$$

$$
+\frac{3(1) \tan 20^{\circ} \tan 40^{\circ} \cot 40^{\circ} \cot 20^{\circ}}{5}+\frac{\sin ^{2} 63^{\circ}+\cos ^{2} 63^{\circ}}{\sin ^{2} 73^{\circ}+\cos ^{2} 73^{\circ}}
$$

$$
=\cos \left(40^{\circ}-\theta\right)-\cos \left(40^{\circ}-\theta\right)+\frac{3}{4}+\frac{3}{5}+1
$$

$$
=\frac{15+12+20}{20}=\frac{47}{20}
$$

