-

Paper: 01 Class-X-Math: Summative Assessment - I

Total marks of the paper: 90
Total time of the paper:
Questions:
1] The mean of a dataset with 12 observations is calculated as 19.25 .
If one more value is included in the data, then for the new data with
13 observations mean becomes 20 . Value of this $13^{\text {th }}$ observation is:
A. 31
B. 30
C. 28
D. 29

2] If A and B are the angles of a right angled triangle $A B C$, right angled at C then $1+\cot ^{2} A=$
A. $\cot ^{2} B$
B. $\tan ^{2} B$
C. $\quad \cos ^{2} B$
D. $\sec ^{2} B$

3] Which of the following numbers is irrational?
A. 0.23232323
B. 0.11111....
C. 2.454545...
D. 0.101100101010.......

4]
If α and β are the zeroes of the quadratic polynomial $f(x)=x^{2}+2 x+1$, then $\frac{1}{\alpha}+\frac{1}{\beta}$ is
A. 2
B. 0
C. -1
D. -2

5] The pair of equations $y=0$ and $y=-7$ has :
A. infinitely many solutions
B. two solutions
C. one solution
D. no solution

6] How many prime factors are there in prime factorization of 5005 ?
A. 7
B. 6
C. 2
D. 4

7] Which of the following is defined?
A. $\sec 90^{\circ}$
B. $\cot 0^{\circ}$
C. $\tan 90^{\circ}$
D. $\operatorname{cosec} 90^{\circ}$

8] If $\sin (A-B)=\frac{1}{2}$ and $\cos (A+B)=\frac{1}{2}$, then the value of B is :
A. 0°
B. 60°
C. 45°
D. 15°

9] Use Euclid's division lemma to show that square of any positive integer is either of form 3 m or $3 \mathrm{~m}+1$ for some integer m.
10] What must be added to polynomial $f(x)=x^{4}+2 x^{3}-2 x^{2}+x-1$ so that the resulting polynomial is exactly divisible by $x^{2}+2 x-3$?
11] Determine a and b for which the following system of linear equations has infinite number of solutions $2 x-(a-4) y=2 b+1 ; 4 x-(a-1) y=5 b-1$.
12] In figure $\angle B A C=90^{\circ}, A D \perp B C$. Prove that: $A B^{2}+C D^{2}=B D^{2}+A C^{2}$.

13]
If $\sqrt{3} \tan \theta=3 \sin \theta$, then prove that $\sin ^{2} \theta-\cos ^{2} \theta=\frac{1}{3}$. OR
If $7 \sin ^{2} \theta+3 \cos ^{2} \theta=4$, then prove that $\sec \theta+\operatorname{cosec} \theta=2+\frac{2}{\sqrt{3}}$.
14] Construct a more than cumulative frequency distribution table for the given data :

Class Interval	$\begin{aligned} & 50- \\ & 60 \end{aligned}$	$\begin{aligned} & 60- \\ & 70 \end{aligned}$	$\begin{aligned} & 70- \\ & 80 \end{aligned}$	$\begin{aligned} & 80- \\ & 90 \end{aligned}$	$\begin{aligned} & 90- \\ & 100 \end{aligned}$	$\begin{aligned} & 100- \\ & 110 \end{aligned}$
Frequency	12	15	17	21	23	19

[Marks:2]

15] Prove that $3-\sqrt{5}$ is an irrational number.
OR
Prove that $\sqrt{n-1}+\sqrt{n+1}$ is an irrational number.
16] Solve for x and y :

$$
\frac{x}{a}+\frac{y}{b}=2 ; a x-b y=a^{2}-b^{2}
$$

17] Find the missing frequency for the given data if mean of distribution is 52 .
[Marks:3]
[Marks:3]

3 | P a g e

(In Rs.) Wages	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of workers	5	3	4	f	2	6	13

OR
Find the mean of following distribution by step deviation method.

Daily Expenditure :	$100-150$	$150-200$	$200-250$	$250-300$	$300-350$
No. of householders :	4	5	12	2	2

18] Prema invests a certain sum at the rate of 10% per annum of interest and another sum at the rate of 8% per annum get an yield of Rs 1640 in one year's time. Next year she interchanges the rates and gets a yield of Rs 40 less than the previous year. How much did she invest in each type in the first year? OR
Six years hence a man's age will be three times his son's age and three years ago, he was nine times as old as his son. Find their present ages.
19] If one solution of the equation $3 x^{2}=8 x+2 k+1$ is seven times the other. Find the solutions and the value of k.

20] If θ and ϕ are the acute angles of a right triangle, and

$$
\text { If } \frac{\sin ^{2} \theta}{\cos ^{4} \phi}+\frac{\sin ^{4} \phi}{\cos ^{2} \theta}=1 \text {, then prove that } \frac{\cos ^{4} \theta}{\sin ^{2} \phi}+\frac{\cos ^{2} \phi}{\sin ^{4} \theta}=1
$$

21] In figure $A B C D$ is rectangle in which segments $A P$ and $A Q$ are drawn. Find the length ($A P+A Q$).

22] In figure sides $X Y$ and $Y Z$ and median $X A$ of a triangle $X Y Z$ are respectively proportional to sides $D E, E F$ and median $D B$ of $\triangle D E F$. Show that $\triangle X Y Z \sim \Delta D E F$.

[Marks:3]

23] In the figure below triangle AED and trapezium EBCD are such that the area of the trapezium is three times the area of the triangle. Find the ratio $\frac{A E}{A B}$.

24] Find the median for the following frequency distribution:

Class Interval	$10-19$	$20-29$	$30-39$	$40-49$	$50-59$	$60-69$	$70-79$
Frequency	2	4	8	9	4	2	1

25] Find all zeroes of polynomial.
$4 x^{4}-20 x^{3}+23 x^{2}+5 x-6$ if two of its zeroes are 2 and 3.
26] Prove the following :
If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
OR
Prove that in a right triangle, the square of the hypotenuse is equal
To the sum of the squares of the other two sides.
27] $\frac{\cot ^{2} A(\sec A-1)}{1+\sin A}=\sec ^{2} A\left(\frac{1-\sin A}{1+\sec A}\right)$
OR
$\frac{1+\cos \theta-\sin \theta}{\cos \theta-1+\sin \theta}=\operatorname{cosec} \theta+\cot \theta$.
28]
Find the value of

$$
\frac{\sec \left(90^{\circ}-\theta\right) \cdot \operatorname{cosec} \theta-\tan \left(90^{\circ}-\theta\right) \cot \theta+\cos ^{2} 25^{\circ}+\cos ^{2} 65^{\circ}}{3 \tan 27^{\circ} \tan 63^{\circ}}
$$

29] Form the pair of linear equations in the following problems, and find the solution graphically.
" 10 students of Class X took part in a Mathematics quiz. If the
number of girls is 4 more than the number of boys, find the number of boys and girls who took part in the quiz."
30] The following table gives production yield per hectare of wheat of
100 farms of a village.

Production yield (in kg/ha)	$50-55$	$55-60$	$60-65$	$65-70$	$70-75$	$75-80$
Number of farms	2	8	12	24	38	16

[Marks:4]

Change the distribution to a more than type distribution and draw ogive.
31] Prove that ratio of the areas of two similar triangles is equal to the ratio of the square of their corresponding sides.
[Marks:4]
32] Prove that:

$$
(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}
$$

33] Show that the square of any positive integer cannot be of the form $5 q+2$ or $5 q+3$ for any integer q.
Submitted by student /visitor Download from: http://jsuniltutorial.weebly.com/

34] Calculate the mode of the following frequency distribution table.

Marks	No. of Students
above 25	52
above 35	47
above 45	37
above 55	17
above 65	8
above 75	2
above 85	0

Solutions Paper-1:

1] Let $x 1, x 2, x 3, x 12$ be the 12 values of the given data. Let the 13 th observation be $x 13$.
$x 1+x 2+x 3$ \qquad $+\times 12=12 \times 19.25=231$
$x 1+x 2+x 3, x 12+x 13=13 \times 20=260$
(x1+x2+x3........+x12)+x13= 260
$x 13=260-231=29$
2] Given, triangle $A B C$ is right angled at C. Therefore,
$A+B=90$ o or $A=900-B$
$1+\cot 2 A=1+\cot 2(90 o-B)=1+\tan 2 B=\sec 2 B$
3] A real number is an irrational number when it has a non terminating non repeating decimal representation.
4] $x 2+2 x+1=(x+1) 2$
$\Rightarrow x=-1$
? = ? $=-1$
$1 /$? and $1 /$? are also $-1.1 / ?+1 /$? $=-2$
5] Since the x-axis $y=0$ does not intersect $y=-7$ at any point.
6] Since $5005=5 \times 7 \times 11 \times 13$ isthe prime factorisation of 5005
7] Because $\operatorname{cosec} 90^{\circ}=1$, others are not defined.
8] $\sin (A-B)=\frac{1}{2} \quad$ and $\cos (A+B)=\frac{1}{2}$,
$(A-B)=30^{\circ}$ and $(A+B)=60^{\circ}$
Solving, we get $B=15^{\circ}$
9] If a and b are one two positive integers. Then $a=b q+r, 0 \leq r \leq b$ Let $b=3$ Therefore, $r=0,1,2$ Therefore, $a=$ $3 q$ or $a=3 q+1$ or $a=3 q+2$

If $a=3 q a 2=9 q 2=3(3 q 2)=3 m$ or where $m=3 q 2 a=3 q+1 a 2$ $=9 q 2+6 q+1=3(3 q 2+2 q)+1=3 m+1$ where $m=3 q 2+2 q$ or $a=3 q+2 a 2=9 q 2+12 q+4=3(3 q 2+4 q+1)+$ $1=3 m+1$ where $m 3 q 2+4 q+1 \quad$ Therefore, the squares of any positive integer is either of the form $3 m$ or $3 m+1$.

10] Given polynomial $P(x)=x 4+2 \times 3-2 x 2+x-1$ Let $g(x)$ must be added to it.

$$
\begin{gathered}
x ^ { 2 } + 2 x - 3 \longdiv { x ^ { 2 } + 1 } \\
\frac{x^{4}+2 x^{3}-3 x^{2}}{x^{2}+x-1} \\
\frac{x^{2}+2 x-3}{-x+2}
\end{gathered}
$$

So, number to be added $=-(-x+2)=x-2$
11] For infinite number of solution,
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{2}{4}=\frac{a-4}{a-1}=\frac{2 b+1}{5 b-1}$
Consider
$\frac{2}{4}=\frac{a-4}{a-1} \Rightarrow 4 a-16=2 a-2 \Rightarrow 2 a=14 \Rightarrow a=7$
Again,
$\frac{2}{4}=\frac{2 b+1}{5 b-1} \Rightarrow 10 b-2=8 b+4 \Rightarrow 2 b=6 \Rightarrow b=3$
12] In $\triangle A B D, A B^{2}=A D^{2}+B D^{2}$
In $\triangle A C D$ AC2 $=A D 2+C D 2 \ldots$ (2)
[By Pythagoras theorem]
(1) - (2) gives,

$$
\begin{aligned}
& A B^{2}-A C^{2}=A B^{2}-A B^{2}+B D^{2}-C D^{2} \\
& \Rightarrow A B^{2}+C D^{2}=B D^{2}+A C^{2}
\end{aligned}
$$

Hence proved.
13] We have
$\frac{\sqrt{3} \operatorname{Sin} \theta}{\operatorname{Cos} \theta}=3 \operatorname{Sin} \theta \Rightarrow \cos \theta=\frac{1}{\sqrt{3}}$
$\sin ^{2} \theta-\cos ^{2} \theta=1-2 \cos ^{2} \theta=1-2\left(\frac{1}{\sqrt{3}}\right)^{2}=1-\frac{2}{3}=\frac{1}{3}$

OR
Consider,
$7 \sin 2 \theta+3 \cos 2 \theta=4$
$\Rightarrow 7 \sin 2^{\theta}+3\left(1-\sin 2^{\theta}\right)=4$
$\Rightarrow 7 \sin 2^{\theta}+3-3 \sin 2^{\theta}=4$
$\Rightarrow 4 \operatorname{Sin} 2 \theta=1$
$\Rightarrow \sin \theta=\frac{1}{2} \Rightarrow \theta=30^{\circ}$
Thus, $\quad \operatorname{Sec} 30 o+\operatorname{Cosec} 30 o=\frac{2}{\sqrt{3}}+2$
14]

Class Interval	Cumulative Frequency
More then 50	108
More then 60	95
More then 70	80

Submitted by student /visitor Download from: http://jsuniltutorial.weebly.com/

More then 80	63
More then 90	42
More then 102	19

${ }^{15]}$ Let $3-\sqrt{5}$ be a rational number.
$\Rightarrow 3-\sqrt{5}=\frac{\frac{p}{q}}{[p, q \text { are integers, } 2 \neq 0]}$
$\Rightarrow \frac{3 q-p}{q}=\sqrt{5}$
Here,
LHS = Rational No.
RHS = irrational No.
But, Irrational no \neq Rational no
\Rightarrow our assumption is wrong $3-\sqrt{5}$ is an irrational.
OR
Let us assume to the contrary, that $\sqrt{7-1}+\sqrt{7+1}$ is a rational number.
$\Rightarrow(\sqrt{n-1}+\sqrt{n+1})^{2}$ is rational.
$\Rightarrow(n-1)+(n+1)-2(\sqrt{n-1} \times \sqrt{n+1})$ is rational
$\Rightarrow 2 n+2 \sqrt{n^{2}-1}$ is rational
But we know that $\sqrt{7^{2}-1}$ is an irrational number
So $2 n+2 \sqrt{7^{2}-1}$ is also an irrational number
So our basic assumption that the given number is rational is wrong.
Hence, $\sqrt{n-1}+\sqrt{n+1}$ is an irrational number.
16] $b x+a y=2 a b$
$a x-b y=a^{2}-b^{2}$
Multiplying (1) with a and (2) with b, we get

$$
\begin{aligned}
& a b x+a^{2} y=2 a^{2} b \\
& a b x-b^{2} y=a^{2} b-b^{3} \\
& -\quad+\quad-\quad+ \\
& y\left(a^{2}+b^{2}\right)=a^{2} b+b^{3} \\
& \Rightarrow y\left(a^{2}+b^{2}\right)=b\left(a^{2}+b^{2}\right) \\
& \Rightarrow y=b
\end{aligned}
$$

From (1), $b x+a b=2 a b$
$\Rightarrow \mathrm{bx}=\mathrm{ab}$
$\Rightarrow x=a$
Hence, $x=a$ and $y=b$.
17]

C.I	Fi	Xi	Fi. . Xi
$10-20$	5	15	75
$20-30$	3	25	75
$30-40$	4	35	140
$40-50$	F	45	45 f
$50-60$	2	55	110
$60-70$	6	65	390
$70-80$	13	75	975

Submitted by student /visitor Download from: http://jsuniltutorial.weebly.com/

8 | Page

	$33+f$		$1765+45 f$

Mean $=\frac{\sum \mathrm{fi} x i}{\sum \mathrm{fi}}$
$52=\frac{1765+45 f}{33+f}$
$\Rightarrow 7 \mathrm{f}=1765-1716=49$
$\Rightarrow \mathrm{f}=7$
OR

C.I	fi	xi	di	fidi
$100-150$	4	125	-2	-8
$150-200$	5	175	-1	-5
$200-250$	12	225	0	0
$250-300$	2	275	1	2
$300-350$	2	325	2	4
				-7

Where:

$$
d_{i}=\frac{x_{i}-225}{50}
$$

$\bar{x}=225-\frac{7}{25} \times 50^{2}=225-14=211$
18] Let us assume that Prema invests Rs x @ 10% and Rs y @ 8% in the first year.
We know that
Interest $=\frac{\mathrm{PRT}}{100}$
ATQ,
$\frac{x \times 10 \times 1}{100}+\frac{y \times 8 \times 1}{100}=1640$
$\Rightarrow 10 x+8 y=164000 \ldots$..(i)
After interchanging,
$\frac{y \times 10 \times 1}{100}+\frac{x \times 8 \times 1}{100}=1600$
we get $10 y+8 x=160000$
$8 x+10 y=160000$...(ii)
Adding (i) and (ii)
$18 x+18 y=324000$
$\Rightarrow x+y=18000$. (iii)

Subtracting (ii) from (i),
$2 x-2 y=4000$
$\Rightarrow \mathrm{x}-\mathrm{y}=2000 \ldots$ (iv)
Adding (iii) and (iv)
$2 x=20000$
$\Rightarrow x=10000$.
Substituting this value of x in (iii)
$y=8000$
So the sums invested in the first year at the rate 10% and 8% are Rs 10000 and Rs 8000 respectively.

OR

Let present age of $\operatorname{man}=x$ years
Let present age of son $=y$ years
Case (i): 6 years hence the equation will be:
$x+6=3(y+6)$
$\Rightarrow x-3 y=12$
Case (ii): 3 years ago the equation will be:
$x-3=9(y-3)$
$\Rightarrow x-9 y=-24$
Solving (1) and (2), we get
$x=30 y=6$.
19] Let α is one zero. ${ }^{\beta}=7 \alpha$ is another zero then
$\Rightarrow \alpha+7 \alpha=\frac{8}{3}$
$\Rightarrow 8 \alpha=\frac{8}{3} \quad \Rightarrow \alpha=\frac{1}{3}$ and $\beta=\frac{7}{3}$

Now,
$\alpha \beta=-\frac{(2 k+1)}{3}$
$\frac{1}{3} \times \frac{7}{z \prime} \times \not z^{\prime}=-2 k-1$
$\Rightarrow \frac{7}{3}+1=-2 \mathrm{k}$
$\Rightarrow-2 k=\frac{10}{3}$
$\Rightarrow k=-\frac{5}{3}$
20] The two angles θ and ϕ being the acute angles of a right triangle, must be complementary angles.
So, $\theta=\left(90^{\circ}-\phi\right)$ and $\phi=\left(90^{\circ}-\theta\right)$
Given $\frac{\sin ^{2} \theta}{\cos ^{4} \phi}+\frac{\sin ^{4} \phi}{\cos ^{2} \theta}=1$
Substituting, $\theta=90^{\circ}-\phi$ and $\phi=90^{\circ}-\theta$ in above equation
$\frac{\sin ^{2}\left(90^{\circ}-\phi\right)}{\cos ^{4}\left(90^{\circ}-\theta\right)}+\frac{\sin ^{4}\left(90^{\circ}-\theta\right)}{\cos ^{2}\left(90^{\circ}-\phi\right)}=1$
$\Rightarrow \frac{\cos ^{2} \phi}{\sin ^{4} \theta}+\frac{\cos ^{4} \theta}{\sin ^{2} \phi}=1$
$\Rightarrow \frac{\cos ^{4} \theta}{\sin ^{2} \phi}+\frac{\cos ^{2} \phi}{\sin ^{4} \theta}=1$
21] Here, $\frac{A B}{A P}=\operatorname{Sin} 30^{\circ} \Rightarrow \frac{60}{A P}=\frac{1}{2} \Rightarrow 120 \mathrm{~cm}$
$\mathrm{Also}, \frac{\mathrm{AD}}{\mathrm{AQ}}=\operatorname{Sin} 30^{\circ} \Rightarrow \frac{30}{\mathrm{AQ}}=\frac{1}{2} \Rightarrow \mathrm{AQ}=60 \mathrm{~cm}$
Now, $A P+A Q=120+60=180 \mathrm{~cm}$

22] Given:In $\triangle X Y Z$ and $\triangle D E F$

$$
\begin{equation*}
\frac{X Y}{D E}=\frac{Y Z}{E F}=\frac{X A}{D B} \tag{1}
\end{equation*}
$$

Toprove: $\triangle X Y Z \sim \triangle D E F$
Proof: Since $X A$ and $D B$ are medians

$$
\begin{align*}
& 2 \mathrm{YA}=\mathrm{Y} Z \\
& 2 \mathrm{~EB}=\mathrm{EF} \tag{2}
\end{align*}
$$

From(1) and (2)

$$
\frac{X Y}{D E}=\frac{2 Y A}{2 E B}=\frac{X A}{D B}
$$

$$
\Rightarrow \triangle X Y A \sim \triangle D E B \quad(B Y S S S)
$$

$$
\begin{equation*}
\Rightarrow \angle \mathrm{Y}=\angle \mathrm{E} \tag{3}
\end{equation*}
$$

Now in $\triangle X Y Z$ and $\triangle D E F$

$$
\begin{array}{ll}
\frac{X Y}{D E}=\frac{Y Z}{E F} & \text { from }(1) \\
\angle Y=\angle E & \text { from }(3)
\end{array}
$$

$$
\Rightarrow \triangle X Y Z \sim \triangle D E F \quad(B Y S A S)
$$

23]

Let the area of triangle $=x$ sq units
Area of trapezium $=3 x$ sq units
Area triangle $A B C=x+3 x=4 x$ sq units
Now,
Consider triangles AED and ABC,
ED II BC...given
$\angle A E D=\angle A B C$ Corresponding angles
$\angle \mathrm{A}=\angle \mathrm{A}$ Common
\Rightarrow ?AED ~ ?ABC
[By AA rule]
$\Rightarrow \frac{\operatorname{Area}(\triangle A E F)}{\operatorname{Area}(\triangle A B C)}=\left(\frac{A E}{A B}\right)^{2}$ (since Ratio of areas of two similar triangles is equal to ratio of square of corresponding sides)
So $\frac{\mathrm{AE}}{\mathrm{AB}}=\frac{1}{2}$
24]

C.I	F	Cf
$9.5-19.5$	2	2
$19.5-29.5$	4	6
$29.5-39.5$	8	14
$32.5-49.5$	9	23
$49.5-59.5$	4	27
$59.5-69.5$	2	29
$69.5-79.5$	1	30

Here, $\quad I=39.5 \mathrm{c} . \mathrm{f}=14 \mathrm{f}=9 \mathrm{~h}=10$
$M=39.5+\frac{10}{9}(15-14) \Rightarrow 39.5+1.1=40.6$
Submitted by student /visitor Download from: http://isuniltutorial.weebly.com/

25] Given 2 and 3 are the zeroes of the polynomial.
Thus $(x-2)(x-3)$ are factors of this polynomial.

$$
\begin{array}{r}
4 x^{2}-1 \\
x^{2}-5 x+\sqrt[6]{4 x^{2}-20 x^{3}+23 x^{2}+5 x-6} \\
4 x^{4}-20 x^{3}+24 x^{2} \\
-\quad \frac{-}{-\not x^{2}+5 x-6} \\
\\
\frac{-\not x^{2}+5 x-6}{-5}+ \\
\end{array}
$$

$4 \times 4-20 \times 3+23 \times 2=5 \mathrm{x}-6=(\mathrm{x} 2-5 \mathrm{x}+6)(4 \times 2-1)$
Thus, $4 \times 4-20 \times 3+23 \times 2+5 x-6=(x-2)(x-3)(2 x-1)(2 x+1)$
Therefore, $2,3, \frac{1}{2}, \frac{-1}{2}$ are zeroes
26] Given: A triangle $A B C$ in which a line parallel to side $B C$ intersects other two sides $A B$ and $A C$ at D and E respectively

To prove that $\frac{A D}{B D}=\frac{A E}{E C}$.
Construction: Let us join BE and CD and then draw $\mathrm{DM} \perp_{\mathrm{AC}}$ and $\mathrm{EN} \perp \mathrm{AB}$.
Proof: Now, area of $\triangle \mathrm{ADE}\left(=\frac{1}{2}\right.$ base \times height $)=\frac{1}{2} \mathrm{AD} \times \mathrm{EN}$.
Letus denote the area of $\triangle A D E$ is denoted as are ($A D E$).
So, $\quad \operatorname{ar}(\mathrm{ADE})=\frac{1}{2} \mathrm{AD} \times \mathrm{EN}$
Similarly, $\quad \operatorname{ar}(\mathrm{BDE})=\frac{1}{2} \mathrm{DB} \times \mathrm{EN}$.

$$
\operatorname{ar}(\mathrm{ADE})=\frac{1}{2} \mathrm{AE} \times \mathrm{DM} \text { and } \operatorname{ar}(\mathrm{DEC})=\frac{1}{2} \mathrm{EC} \times \mathrm{DM} .
$$

Therefore, $\frac{\operatorname{ar}(\mathrm{ADE})}{\operatorname{ar}(\mathrm{BDE})}=\frac{\frac{1}{2} \mathrm{AD} \times \mathrm{EN}}{\frac{1}{2} \mathrm{DB} \times \mathrm{EN}}=\frac{\mathrm{AD}}{\mathrm{DB}}$
and $\quad \frac{\operatorname{ar}(\mathrm{ADE})}{\operatorname{ar}(\mathrm{DEG})}=\frac{\frac{1}{2} \mathrm{AE} \times \mathrm{DM}}{\frac{1}{2} \mathrm{EC} \times \mathrm{DM}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
Note that \triangle BDE and DEC are on the same base DE and between the same parallels $B C$ and $D E$.
So, $\operatorname{ar}($ BDE $)=\operatorname{ar}($ DEG $)$
Therefore, from (1), (2) and (3), we have :

$$
\frac{A D}{D B}=\frac{A E}{E C}
$$

OR
Submitted by student /visitor Download from: http://jsuniltutorial.weebly.com/

Given: A right triangle $A B C$ right angled at B.
To prove: that $A C 2=A B 2+B C 2$
Construction: Let us draw $B D \perp \mathrm{AC}$ (See fig.)

Proof:
Now, $\triangle \mathrm{ADB} \sim \triangle \mathrm{ABC} \quad$ (Using Theorem: If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse, then triangles on both sides of the perpendicular are similar to the whole triangle and to each other)

$$
\begin{align*}
& \quad \frac{A D}{A B}=\frac{A B}{A C} \\
& \text { So, } \tag{1}\\
& \text { Or, } A D \cdot A C=A B 2 \\
& \text { Also, } \triangle B D C \sim \triangle A B C \\
& \quad \frac{C D}{B C}=\frac{B C}{A C} \\
& \text { So, } \\
& \text { Or, } C D . A C=B C 2 \tag{2}\\
& \text { Adding (1) and }(2), \\
& A D . A C+C D \cdot A C=A B 2+B C 2 \\
& O R, \quad A C(A D+C D)=A B 2+B C 2 \\
& O R, \quad A C \cdot A C=A B 2+B C 2 \\
& O R \quad A C 2=A B 2+B C 2
\end{align*}
$$

Hence proved.
27]

$$
\begin{aligned}
\operatorname{LHS} & =\frac{\cot ^{2} A(\sec A-1)}{1+\sin A} \\
& =\frac{\cot ^{2} A(\sec A-1)}{1+\sin A} \times \frac{\sec A+1}{\sec A+1} \times \frac{1-\sin A}{1-\sin A} \\
& =\frac{\cot ^{2} A\left(\sec ^{2} A-1\right)}{(\sec A+1)(1+\sin A)} \times \frac{1-\sin A}{1-\sin A} \\
& =\frac{\cot ^{2} A \tan ^{2} A(1-\sin A)}{(\sec A+1)\left(1-\sin ^{2} A\right)} \\
& =\frac{(1-\sin A)}{(\sec A+1) \cos ^{2} A} \\
& =\sec A\left(\frac{1-\sin A}{1+\sec A}\right) \\
& =R H S
\end{aligned}
$$

OR
$\frac{1+\cos \theta-\sin \theta}{\cos \theta-1+\sin \theta}=\operatorname{cosec} \theta+\cot \theta$
Dividing numerator and denominator of LHS by $\sin \theta$, we get
Submitted by student /visitor Download from: http://jsuniltutorial.weebly.com/

$$
\begin{aligned}
\text { LHS } & =\frac{\operatorname{cosec} \theta+\cot \theta-1}{\cot \theta-\operatorname{cosec} \theta+1} \\
& =\frac{(\operatorname{cosec} \theta+\cot \theta)-\left(\operatorname{cosec} 2 \theta-\cot ^{2} \theta\right)}{(\cot \theta-\operatorname{cosec} \theta+1)} \\
& =\frac{(\operatorname{cosec} \theta+\cot \theta)-(\operatorname{cosec} \theta+\cot \theta)(\operatorname{cosec} \theta-\cot \theta)}{(\cot \theta-\operatorname{cosec} \theta+1)} \\
& =\frac{(\operatorname{cosec} \theta+\cot \theta)(1-\operatorname{cosec} \theta+\cot \theta)}{(\cot \theta-\operatorname{cosec} \theta+1)} \\
& =\operatorname{cosec} \theta+\cot \theta
\end{aligned}
$$

28] Using $\sec \left(90^{\circ}-\theta\right)=\operatorname{cosec} \theta, \tan \left(90^{\circ}-\theta\right)=\cot \theta$

$$
\text { and } \cos \left(90^{\circ}-\theta\right)=\sin \theta
$$

$$
\begin{aligned}
& \frac{\sec \left(90^{\circ}-\theta\right) \cdot \operatorname{cosec} \theta-\tan \left(90^{\circ}-\theta\right) \cot \theta+\cos ^{2} 25^{\circ}+\cos ^{2} 65^{\circ}}{3 \tan 27^{\circ} \tan 63^{\circ}} \\
& =\frac{\operatorname{cosec} \theta \cdot \operatorname{cosec} \theta-\cot \theta \cdot \cot \theta+\cos ^{2}\left(90^{\circ}-65^{\circ}\right)+\cos ^{2} 65^{\circ}}{3 \tan \left(90^{\circ}-63^{\circ}\right) \tan 63^{\circ}} \\
& =\frac{\operatorname{cosec}^{2} \theta-\cot ^{2} \theta+\sin ^{2} 65^{\circ}+\cos 5^{2} 65^{\circ}}{3 \cot 63^{\circ} \tan 63^{\circ}} \\
& {\left[\text { Since, } \sin ^{2} \theta+\cos 5^{2} \theta=1 \text { and } \operatorname{cosec} e^{2} \theta-\cot ^{2} \theta=1\right]}
\end{aligned}
$$

$$
=\frac{1+1}{3}=\frac{2}{3}
$$

29] Let the number of girls and boys in the class be x and y respectively.
According to the given conditions, we have:
$x+y=10$
$x-y=4$
$x+y=10 \Rightarrow x=10-y$
Three solutions of this equation can be written in a table as follows:

x	5	4	6
y	5	6	4

$x-y=4 \Rightarrow x=4+y$
Three solutions of this equation can be written in a table as follows:

x	5	4	3
y	1	0	-1

The graphical representation is as follows:

Submitted by student /visitor Download from: http://isuniltutorial.weebly.com/

From the graph, it can be observed that the two lines intersect each other at the point (7, 3).
So, $x=7$ and $y=3$.
30] We can obtain cumulative frequency distribution of more than type as following:

Production yield (lower class limits)	Cumulative frequency
more than or equal to 50	100
more than or equal to 55	$100-2=98$
more than or equal to 60	$98-8=90$
more than or equal to 65	$90-12=78$
more than or equal to 70	$78-24=54$
more than or equal to 75	$54-38=16$

Now taking lower class limits on x-axis and their respective cumulative frequencies on y-axis we can obtain its ogive as following.

31]

Statement: The ratio of the areas of two
similar triangles is equal to the square of the ratio of their corresponding sides.
Given: $\mathrm{DABC} \sim \mathrm{DPQR}$ To Prove: $\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{PR}^{2}}$ Construction: Draw $A D^{\wedge} B C$ and $\mathrm{PS}^{\wedge} \mathrm{QR}$

$$
\frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})}=\frac{\frac{1}{2} \times B C \times A D}{\frac{1}{2} \times Q R \times P S}=\frac{B C}{Q R} \times \frac{A D}{P S}
$$

DADB ~ DPSQ (AA)
Therefore, $\frac{A D}{P S}=\frac{A B}{P Q}$
Therefore, $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}$
But DABC~ $\sim \begin{aligned} & \mathrm{DPQR} \\ & \\ & \text { Therefore, }\end{aligned}=\frac{B C}{\mathrm{PS}}=\frac{\mathrm{BR}}{}$

Submitted by student /visitor Download from: http://jsuniltutorial.weebly.com/

Therefore, $\frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})}=\frac{\mathrm{BC}}{\mathrm{QR}} \times \frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{BC}^{2}}{Q R^{2}}$
From (iii)

$$
\frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})}=\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{PR}^{2}}
$$

32]

$$
\begin{aligned}
\text { L.H.S } & =(\operatorname{cosec} A-\sin A)(\sec A-\cos A) \\
& =\left(\frac{1}{\sin A}-\sin A\right)\left(\frac{1}{\cos A}-\cos A\right) \\
& =\left(\frac{1-\sin ^{2} A}{\sin A}\right)\left(\frac{1-\cos ^{2} A}{\cos A}\right) \\
& =\frac{\left(\cos ^{2} A\right)\left(\sin ^{2} A\right)}{\sin A \cos A} \\
& =\sin A \cos A \\
\text { R.H.S } & =\frac{1}{\tan A+\cot A} \\
& =\frac{1}{\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}}=\frac{\sin ^{2} A+\cos A}{\sin ^{2} A \cos A} \\
& =\frac{\sin A \cos A}{\sin { }^{2} A+\cos A} \\
& =\sin A \cos A
\end{aligned}
$$

Hence, L.H.S = R.H.S
33] Let $5 q+2,5 q+3$ be any positive integers
$(5 q+2) 2=25 q 2+20 q+4=5 q(5 q+4)+4$ is not of the form $5 q+2$
Similarly for $2^{\text {nd }} \quad(5 q+3) 2=25 q 2+30 q+9$
$=5 q(5 q+6)+9$ is not of the form $5 q+3$
So, the square of any positive integer cannot be of the form5q+2 or $5 q+3$
For any integer q
34]

Marks	Frequency
$25-35$	5
$35-45$	10
$45-55$	20
$55-65$	9
$65-75$	6
$75-85$	2
Total	52

Here the maximum frequency is 20 and the corresponding class is $45-55.50,45-55$ is the modal class.
We have, $l=45, h=10, f=20, f_{1}=10, f_{2}=9$
Mode $=\ell_{+}\left[\frac{f-f_{1}}{2 f-f_{1}-f_{2}}\right] \times h=45+\left[\frac{20-10}{40-10-9}\right] \times 10$
Mode=49.7

