JSUNIL TUTORIAL,SAMASTIPUR PRACTICE ASSIGNMENT X XARITHMETIC PROGRESSION

(1) Determine k so that $k+2$, $4 k-6$ and $3 k-2$ are the three consecutive terms of an AP.
$a_{1}=k+2$
$\mathrm{a}_{2}=4 \mathrm{k}-6$
$a_{3}=3 k-2$
$\mathrm{a}_{2}-\mathrm{a}_{1}=\mathrm{a}_{3}-\mathrm{a}_{2}$
$4 \mathrm{k}-6-(\mathrm{k}+2)=3 \mathrm{k}-2-(4 \mathrm{k}-6)$
$4 \mathrm{k}-6-\mathrm{k}-2=3 \mathrm{k}-2-4 \mathrm{k}+6$
$3 k-8=-k+4$
$3 k+k=4+8$
$4 \mathrm{k}=12$
$\mathrm{k}=3$
(2) if 7 times the 7th term of an AP is equal to 11 times the 11th term, show that the 18th term is zero.

Given: 7 times the 7 th term of an AP is equal to 11 times the 11 th term
$7(a+6 d)=11(a+10 d)$
$7 a+42 d=11 a+110 d$

42d-110d=11a-7a
$68 d=4 a$
$a=-17 d$

Now, the 18th term $=a+17 d=-17 d-17 d=0$
(3) If the nth term of an A.P is $\mathbf{7 n - 5}$. Find 100th term

Given that the nth term of the A.P. is $7 n-5$

So 100 th term will be 7 (100) $-5=695$
(4) if m times the $m t h$ term of an AP is equal to n times the nth term. Show that (m+n)th term of the AP is zero

JSUNIL TUTORIAL,SAMASTIPUR PRACTICE ASSIGNMENT Y ARITHMETIC PROGRESSION

We know :- $\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$a_{(m+n)}=a+(m+n-1) d$ (just put $m+n$ in place of n)

Let the first term and common difference of the A.P. be 'a' and ' d ' respectively.
Then, $m^{\text {th }}$ term $=a+(m-1) d$ and $n^{\text {th }}$ term $=a+(n-1) d$
By the given condition,
$\mathrm{m} \times \mathrm{a}_{\mathrm{m}}=\mathrm{n} \times \mathrm{a}_{\mathrm{n}}$
$m[a+(m-1) d]=n[a+(n-1) d]$
$\Rightarrow m a+m(m-1) d=n a+n(n-1) d$
$=>m a+\left(m^{2}-m\right) d-n a-\left(n^{2}-n\right) d=0($ taking the Left Hand Side to the other side)
$=>m a-n a+\left(m^{2}-m\right) d-\left(n^{2}-n\right) d=0$ (re-ordering the terms)
$=>a(m-n)+d\left(m^{2}-n^{2}-m+n\right)=0$ (taking 'a ' and 'd ' common)
$=>\mathrm{a}(\mathrm{m}-\mathrm{n})+\mathrm{d}\{(\mathrm{m}+\mathrm{n})(\mathrm{m}-\mathrm{n})-(\mathrm{m}-\mathrm{n})\}=0\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right.$ identity $)$
Now divide both sides by (m-n)
$=>a(1)+d\{(m+n)(1)-(1)\}=0$
$=>a+d(m+n-1)=0$

From equation number 1 and 2 ,
$a_{(m+n)}=a+(m+n-1) d$
And we have shown ,
$a+d(m+n-1)=0$

So, $\mathrm{a}_{(\mathrm{m}+\mathrm{n})}=0$
(5). Prove that the nth term of an AP cannot be $n^{2}+1$. Justify your answer.

JSUNIL TUTORIAL,SAMASTIPUR PRACTICE ASSIGNMENT X ARITHMETIC PROGRESSION

Common difference of an A.P. must always be a constant.
$\therefore d$ cannot be $n-1$. Here, d varies when n takes different values.

For $n=1, d=1-1=0$

For $n=2, d=2-1=1$

For $n=3, d=3-1=2$
$\therefore d$ is not constant.

Thus, d cannot be taken as $n-1$.
a_{n} is the $n^{\text {th }}$ term of an A.P. if $a_{n}-a_{n-1}=$ constant

Given, $a_{n}=n^{2}+1$
$a_{n}-a_{n-1}=\left(n^{2}+1\right)-\left[(n-1)^{2}+1\right]$
$=\left(n^{2}+1\right)-\left(n^{2}-2 n+2\right)$
$=2 n-1$
$\therefore a_{n}-a_{n-1} \neq$ constant

Thus, $a_{n}=n^{2}+1$ cannot be the $n^{\text {th }}$ term of A.P.
(6) Find the sum of the first k terms of a series whose $n{ }^{t h}$ term is $2 a n+b$

The $n^{\text {th }}$ term of the AP is given by $2 \mathrm{an}+\mathrm{b}$
$a 1=2 a+b$
$a 2=4 a+b$
a3=6a+b

Common difference $=\mathrm{d}=(4 \mathrm{a}+\mathrm{b})-(2 \mathrm{a}+\mathrm{b})=2 \mathrm{a}$

JSUNIL TUTORIAL,SAMASTIPUR PRACTICE ASSIGNMENT X ARITHMETIC PROGRESSION

Therefore, sum of first k terms $=k / 2[(2 a+(k-1) d]=k / 2[(2(2 a+b)+(k-1) 2 a]=k / 2 \quad x 2$ $(2 a+b+k-a)=k(a+b+a k)$
(7) If S_{n} denotes the sum of \boldsymbol{n} terms of an AP whose common difference is d and the first term is a the find $-S_{n}-2 S_{n}-1+S_{n}-2$
iven, a and d are the first term and common difference of the A.P.
Sum of n term of the A.P, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$

$$
\begin{aligned}
& \mathrm{S}_{n}-2 \mathrm{~S}_{n-1}+\mathrm{S}_{n+2} \\
& =\frac{n}{2}[2 a+(n-1) d]-2 \frac{(n-1)}{2}[2 a+(n-1-1) d]+\frac{(n+2)}{2}[2 a+(n+2-1) d] \\
& =\frac{n}{2}[2 a+(n-1) d]-\frac{2(n-1)}{2}[2 a+(n-2) d]+\frac{(n+2)}{2}[2 a+(n+1) d] \\
& =\frac{1}{2}[2 a n+n(n-1) d-4 a(n-1)-2(n-1)(n-2) d+2 a(n+2)+(n+2)(n+1) d] \\
& =\frac{1}{2}\left[2 a(n-2 n+2+n+2)+d\left(n^{2}-n-2 n^{2}+6 n-4+n^{2}+3 n+2\right)\right] \\
& =\frac{1}{2}[2 a(4)+d(8 n-2)] \\
& =4 a+(4 n-1) d
\end{aligned}
$$

(8) How many terms of the arithmetic series $24+21+18+15+\mathrm{g}$, be taken continuously so that their sum is $\mathbf{- 3 5 1}$.

In the given arithmetic series, $a=24, d=-3$.

Let us find n such that $\mathrm{Sn}=-351$

Now, $S_{n}=n / 2[(2 a+(n-1) d]$
$-351=n / 2[(48+(n-1) x(-3)]$
on solving we get, $n^{2}-17 n-234=0$
$\Rightarrow(n-26 h)(n+9)=0$
$\Rightarrow n=26$ or $n=-9$

JSUNIL TUTORIAL,SAMASTIPUR PRACTICE ASSIGNMENT XARITHMETC PROGRESSION

Here n, being the number of terms needed, cannot be negative
Thus, 26 terms are needed to get the sum -351 .
(9) Find the sum of the first $2 n$ terms of the following series. $1^{2}-2^{2}+3^{2}-4^{2}$ +
We want to find $1^{2}-2^{2}+3^{2}-4^{2}+\ldots .$. to $2 n$ terms
$=1-4+9-16+25$
$2 n$ terms
$=(1-4)+(9-16)+(25-36)+---------$ to n terms. (after grouping)
$=-3+(-7)+(-11)+$ \qquad n terms

Now, the above series is in an A.P. with first term $a=-3$ and common difference $d=-4$

Now, $S_{n}=n / 2[(2 a+(n-1) d]==n / 2[(2 x-3)+(n-1)(-4)]=-n(2 n+1)$.
(10) A circle is completely divided into n sectors in such a way that the angles of the sectors are in arithmetic progression. If the smallest-of these angles is 8° and the largest 72°, calculate \mathbf{n} and the angle in the fourth sector.

Let the common difference of the A.P. be x
Given: The smallest angle $=8^{\circ}$
$\Rightarrow a=8$
And the largest is 72°
$\Rightarrow a_{n}=72$
$\Rightarrow a+(n-1) d=72$
$\Rightarrow 8+(n-1) d=72$
$\Rightarrow(n-1) d=72-8=64$
We know that sum of all the angles of a circle is 360°
$S_{n}=n / 2[(2 a+(n-1) d]=360$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=\mathrm{n} / 2[(2 \times 8+64]=360$
$\Rightarrow \mathrm{n}=9$

JSUNIL TUTORIAL,SAMASTIPUR PRACTICE ASSIGNMENT XARITHMETIC PROGRESSION

Putting the value of n in equation (1) we get
$(9-1) d=64$
$d=8$
Now angle in fourth sector $=a_{4}=a+(4-1) d$
$=a+3 d=8+3 \times 8=8+24=32$
\therefore The value of $n=9$ and angle in fourth sector is 32°
(11) If the sum of n terms of an A.P. is $3 n^{2}-5 n$, then which term of the A.P. is $130 ?$
$S_{n}=3 n^{2}-5 n$
Put $n=1$
$S_{1}=T_{1}=3(1)^{2}-5(1)=-2$
Put $n=2$
$S_{2}=3(2)^{2}-5(2)=2$
$T_{2}=S_{2}-S_{1}=2-(-2)=4$
Put $n=3$
$S_{3}=3(3)^{2}-5(3)=12$
$T_{3}=S_{3}-S_{2}=12-2=10$

Thus, we have
First term, $a=-2$
Common difference, $d=4-(-2)=6$
Let $T_{n}=130$
$\Rightarrow a+(n-1) d=130$
$\Rightarrow-2+(n-1) 6=130$
$\Rightarrow(n-1) 6=132$
$\Rightarrow n-1=22$
$\therefore n=23$

Thus, $23^{\text {rd }}$ term is 130 .
(12) Which term of the AP, $3,10,17$ will be 84 more than its 13 th term?

Let the nth term be 84 more than the $13^{\text {th }}$ term.
Now a/q,
$a=3, d=10-3=7$
So, 13th term $=\mathrm{a}+12 \mathrm{~d}=3+12 \times 7=87$
Then nth term=84+87=171
$171=a+(n-1) d$
$171=3+(n-1) \times 7$
$171-3 / 7+1=n$
$168 / 7+1=n$
$24+1=25=n$

JSUNIL TUTORIAL,SAMASTIPUR PRACTICE•ASSIGNMENT - YARITHMETIC PROGRESSION

Therefore 25th term of the ap will be 84 more than 13th term
(13) A sum of Rs 700 is to be used to give seven cash prizes to students of a school for their overall academic performance. if each prize is Rs 20 less than its preceding prize, find the value of each prize.

Let AP be $x,(x-20),(x-40),(x-60),(x-80),(x-100),(x-120)$
$S_{n}=700, n=7$
then, $S_{n}=n / 2\left(a+a_{n}\right)$
$700=7 / 2(x+x-120)$
$700=7 / 2(2 x-120)$
$700=7 x-420$
$x=160$

Then the AP --- $160,140,120,100,80,60,40$
(14) there are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres.a gardener waters all the trees separately starting from the well and he returns to well after watering each tree to get water for the next.find the tatal distance the gardener will cover in order to water all the trees.

Gardner is standing near the well initially and he did not return to the well after watering the last tree.

Distance covered by Gardner to water $1^{\text {st }}$ tree and return to the initial position $=$ $10 \mathrm{~m}+10 \mathrm{~m}=20 \mathrm{~m}$

Distance covered by Gardner to water $2^{\text {nd }}$ tree and return to the initial position $=$ $15 \mathrm{~m}+15 \mathrm{~m}=30 \mathrm{~m}$

JSUNIL TUTORIAL,SAMASTIPUR PRACTICE•ASSIGNMENT - YARITHMETIC PROGRESSION

Distance covered by Gardner to water $3^{\text {rd }}$ tree and return to the initial position $=$ $20 \mathrm{~m}+20 \mathrm{~m}=40 \mathrm{~m}$
\therefore Distances covered by the Gardner to water the plants are in A.P.
Here $a=20, d=10$
Distance covered to water $25^{\text {th }}$ tree $=20+(25-1) \times 10=20+240=260$
Total distance covered by the Gardner=25/2[(2x20+(25-1) x10] -260 =2470
Thus, the total distance covered by the Gardner is 2740 m .
(15) if 9 th term of an A.P.is zero prove that its 29th term is double the 19th term.

Let a and d be the first term and common difference of the given A.P.
nth term of $A \cdot P=a+(n-1) d=0$
Given, 9th term of A.P $=0 \Rightarrow a+(9-1) d=0 \Rightarrow a+8 d=0$
19th term of A.P. $=a+(19-1) d=a+18 d=a+8 d+10 d=0+10 d$ (from (1))

$$
==10 \mathrm{~d}(2)
$$

$\therefore 29^{\text {th }}$ term of $A P=a+(29-1) d=a+28 d=a+8 d+10 d+10 d$

$$
\begin{aligned}
& =0+2 \times 10 d=20 d \\
& =2 \times 10 d \\
= & 2 \times 19 \text { th term of A.P (from- } 2)
\end{aligned}
$$

Thus, 29th term of the given A.P. is double the 19th term of the given A.P.
(16) Find a, b such that $27, a, b-6$ are in A.P.

27, a, b-6 are in A.P.
$d=t_{2}-t_{1}=t_{3}-t_{2}=a-27=b-6-a$
$\Rightarrow \mathrm{a}+\mathrm{a}=\mathrm{b}-6+27$
$\Rightarrow 2 \mathrm{a}=\mathrm{b}+21$
$\Rightarrow 2 \mathrm{a}-\mathrm{b}=21$
(17) For what value of n, the nth terms of the sequences $3,10,17, \ldots$ and $63,65,67, \ldots$ are equal.

JSUNIL TUTORIAL,SAMASTIPUR PRACTICE ASSIGNMENT X ARITHMETIC PROGRESSION

Given, the nth terms of the sequences $3,10,17, \ldots$ and $63,65,67, \ldots$ are equal. since, nth term of A.P. $=a+(n-1) d$
$\Rightarrow 3+(\mathrm{n}-1) 7=63+(\mathrm{n}-1) 2$
$\Rightarrow 3+7 n-7=63+2 n-2$
$7 n-2 n=61+4$
$5 n=65$
$n=13$
Therefore, $13^{\text {th }}$ terms of both these A.P.s are equal to each other.
(18)Find the sum of n terms of an A.P.whose nth terms is given by $a n=5-6 n$.

We have, $a_{n}=5-6 n$
$\Rightarrow a_{1}=5-6 \times 1=-1$
So, the given sequence is an A.P with first term $a=a_{1}=-1$ and last term $I=a_{n}=$ $5-6 n$

Therefore the sum of n terms is given by: $S_{n}=n / 2(a+l)=n / 2(-1+5-6 n)=2 n-3 n^{2}$
(19) the digits of a positive integer, having three digits are in A.P. and their sum is 15.the number obtained by reversing the digits is 594 less than the original number. Find the number.

Let digits of the number be $(a-d)$, a and $(a+d)$ respectively.
\therefore The required number is $100(a-d)+10 a+(a+d)$.
Given : The sum of the digits $=15$
$\Rightarrow(\mathrm{a}-\mathrm{d})+\mathrm{a}+(\mathrm{a}+\mathrm{d})=15$
$3 \mathrm{a}=15 \Rightarrow \mathrm{a}=5$
Now, the number on reversing the digits is $100(a+d)+10 a+(a-d)$.
According to the question
$100(a-d)+10 a+a+d=100(a+d)+10 a+(a-d)+594$
on solving we get, $d=-3$
The digits of the number are $(5-(-3)), 5,(5+(-3)=8,5,2$
And the required number is $8 \times 100+5 \times 10+2=852$

