Jsurll turopial
 ACBSE Coaching for Ohathematics and Science

Class 10 Arithmetic progression CBSE Test Paper-3

1. How many terms of the AP: 9, 17, 25, \qquad Must be taken to give a sum of 636 ?

Ans: $a=9, d=8$ and
$S_{n}=636$
$\Rightarrow \frac{n}{2}[2 a+(n-1) d]=636 \Rightarrow \frac{n}{2}[2 \times 9+(n-1) \times 8]=636 \Rightarrow 1272=18 n+8 n^{2}-8 n$
$\Rightarrow 8 n^{2}+10 n-1272=0 \Rightarrow 4 n^{2}+5 n-636=0$
$D=b^{2}-4 a c=25-4 \times 4 x-636=25+10176=10201$
$\Rightarrow \sqrt{D}=\sqrt{10201}=101$
$\mathrm{n}=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-5 \pm 101}{2 \times 4} \Rightarrow \mathrm{n}=\frac{106}{8}=\frac{53}{4}$ and $-\frac{96}{8}=-12$
As 12 is an integer so number of term will be 12
2. The first term of an AP is 5 , the last term is 45 and the sum is 400 . Find the number of terms and the common difference.

Ans: $\mathrm{a}=5, \mathrm{a}_{\mathrm{n}}=\mathrm{l}=45$ and $\mathrm{S}_{\mathrm{n}}=400$
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}[\mathrm{a}+\mathrm{l}] \Rightarrow 400=\frac{n}{2}[5+45] \Rightarrow \frac{800}{50}=\mathrm{n} \Rightarrow \mathrm{n}=16$
Now, $a_{n}=a+(n-1) d \Rightarrow 45=5+(16-1) d \Rightarrow d=\frac{40}{15}=\frac{8}{3}$
3. The first and the last term of an AP are 17 and 350 respectively. If the common difference is 9 , how many terms are there and what is the sum?

Ans: $\mathrm{a}=17, \mathrm{~d}=9, \quad \mathrm{a}_{\mathrm{n}}=350 \Rightarrow 17+(\mathrm{n}-1) \times 9=350 \Rightarrow \mathrm{n}=38$
$S_{n}=\frac{n}{2}[a+1]=\frac{38}{2}[17+350] \Rightarrow 19 \times 367=6973$
4. Find the sum of first 22 terms of an AP in which $\mathrm{d}=7$ and 22 nd term is 149.

Ans: $\mathrm{n}=22, \mathrm{~d}=7$

22nd term is $149 \Rightarrow a+21 d$

Jsurll turojal
 ACBSE Coaching for Ohathematics and Science

$=149 \Rightarrow a+21 \times 7=149$
$\Rightarrow a=149-147=2$
$S_{n}=\frac{n}{2}[a+1] \Rightarrow S_{22}=\frac{22}{2}[2+149]=11[2+149] \Rightarrow 1661$
5. Find the sum of first 51 terms of an AP whose second and third terms are 14 and 18 respectively.

Ans: $\mathrm{t}_{2}=14$ and $\mathrm{t}_{3}=18 \Rightarrow \mathrm{~d}=\mathrm{t}_{3}-\mathrm{t}_{2}=18-14=4$
$a=t_{2}-d=14-4=10$

The sum of first 51 terms $=25.5[2 \times 10+50 \times 4]=5610$
6. The ratio of the sums of m and n terms of an AP is $m^{2}: n^{2}$. show that the ratio of the $m^{\text {th }}$ and $\mathrm{n}^{\text {th }}$ terms is $(2 \mathrm{~m}-1):(2 \mathrm{n}-1)$

Ans: Given: The ratio of the sums of m and n terms of an AP is $m^{2}: n^{2}$
$\frac{m^{2}}{n^{2}}=\frac{\frac{m}{2}[2 a+(m-1) d]}{\frac{n}{2}[2 a+(n-1) d]} \Rightarrow \frac{m}{n}=\frac{[2 a+(m-1) d]}{[2 a+(n-1) d]}$
$\Rightarrow m[2 a+(n-1) d]=n[2 a+(m-1) d] \quad \Rightarrow 2 \mathrm{am}+\mathrm{m}(n-1) d=2 \mathrm{an}+\mathrm{n}(m-1) d$
$\Rightarrow 2 \mathrm{a}(\mathrm{m}-\mathrm{n})=\mathrm{d}[\mathrm{n}(\mathrm{m}-1)-\mathrm{m}(\mathrm{n}-1)] \quad \Rightarrow 2 \mathrm{a}(\mathrm{m}-\mathrm{n})=\mathrm{d}[\mathrm{mn}-\mathrm{n}-\mathrm{mn}+\mathrm{m}]$
$\Rightarrow 2 \mathrm{a}(\mathrm{m}-\mathrm{n})=\mathrm{d}[\mathrm{m}-\mathrm{n}] \Rightarrow \mathrm{d}=2 \mathrm{a}$

Now, $\frac{T_{m}}{T_{n}}=\frac{a+(m-1) d}{a+(n-1) d}=\frac{a+(m-1) \times 2 a}{a+(n-1) \times 2 a}=\frac{a+2 a m-2 a}{a+2 a n-2 a}=\frac{2 a m-a}{2 a n-a}=\frac{a(2 m-1)}{a(2 n-1)}=\frac{(2 m-1)}{(2 n-1)}$
Hence, ratio of $\mathrm{m}^{\text {th }}$ and $\mathrm{n}^{\text {th }}$ term is $2 m-1: 2 n-1$.
7. In an AP, the sum of first n terms is $\frac{3 n^{2}}{2}+\frac{5 n}{2}$, find its $25^{\text {th }}$ term

Ans: the sum of first n terms is $\frac{3 n^{2}}{2}+\frac{5 n}{2}$
$\mathrm{S}_{1}=\frac{3}{2}+\frac{5}{2}=4 \Rightarrow \mathrm{~S}_{1}=\mathrm{a}_{1}=4$ and $\mathrm{S}_{2}=\frac{3 \times 2^{2}}{2}+\frac{5 \times 2}{2}=11 \Rightarrow \mathrm{a}_{2}=\mathrm{S}_{2}-\mathrm{S}_{1}=11-4=7$
Now, $d=a_{2}-a_{1}=7-4=3$;
$25^{\text {th }}$ term of this $A P=a+24 d=4+24 \times 3=4+72=76$

Jsuril mional
 ACBSE Coaching for Ohathematics and Science

8. Prove that the $n^{\text {th }}$ of an AP cannot be $n^{2}+1$. Justify your answer.

Ans: a_{n} is the $n^{\text {th }}$ term of an A.P. If $a_{n}+a_{n-1}=$ constant
If possible, $a_{n}=n^{2}+1$
$a_{n-1}-a_{n}=\left(n^{2}+1\right)-\left[(n-1)^{2}+1\right]$
$=\left(n^{2}+1\right)-\left(n^{2}-2 n+2\right)=n^{2}+1-n^{2}+2 n-2=2 n-1$
$\therefore \mathrm{a}_{\mathrm{n}-1}-\mathrm{a}_{\mathrm{n}} \neq$ constant Thus, $\mathrm{a}_{\mathrm{n}}=\mathrm{n}^{2}+1$ cannot be the n term of A.P
9. If the sum of first 7 terms of an AP is 49 and that of 17 terms is 289 , find the sum of first n terms.

Ans: the sum of first 7 terms of an AP is $49 \Rightarrow 49=3.5[2 \mathrm{a}+6 \mathrm{~d}] \Rightarrow \mathrm{a}+3 \mathrm{~d}=7$
the sum of first 17 terms of an AP is $289 \Rightarrow 289=8.5[2 a+16 d] \Rightarrow a+8 d=17$

Solving them, $a+8 d-a-3 d=17-7 \Rightarrow 5 d=10 \Rightarrow d=2$

Putting this value in expression (i), $a+3 \times 2=7 \Rightarrow a=1$

The sum of first n terms $=\frac{n}{2}\left[2 a+(n-1) d=\frac{n}{2}[2 \times 1+(n-1) \times 2]\right.$
$\Rightarrow \frac{n}{2}[2+(n-1) \times 2] \Rightarrow n+(n-1) n=n+n^{2}-n=n^{2}$
10. If the sum of the first n terms of an $A P$ is $4 n-n^{2}$, what is the first term (that is $S 1$)? What is the sum of first two terms? What is the second term? Similarly, find the 3rd, the 10th and the nth term.

Ans: the sum of the first n terms of an AP is $4 n-n^{2}$
$\mathrm{a}_{1}=\mathrm{S}_{1}=4 \times 1-1^{2}=3 \Rightarrow \mathrm{a}=3$
The sum of first two terms $=S_{2}=4 \times 2-2^{2}=4$
What is the second term $=a_{2}=S_{2}-S_{1}=4-3=1$
$\mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}=1-3=-2$
$a_{3}=a+2 d=3+2 x-2=3-4=-1$
$a_{10}=a+9 d=3+9 x-2=3-18=-15$
$a_{n}=a+(n-1) d=3+(n-1) x-2=3-2 n+2=5-2 n$

