ACBSE Coaching for OLathematics and Science

Class 10 Arithmetic progression CBSE Test Paper-1

Question: 1. Find the 16 th term of the AP : 2, 7, 12, . .

Solution: Here, $a=2, d=7-2=5$ and $n=16$.

We have $a_{n}=a+(n-1) d$

So, $a_{10}=2+(16-1) \times 5=2+75=77$

Therefore, the 16th term of the given AP is 47 .

Question: 2. Which term of the AP : 21, 18, 15, .. is - -75 ? Also, is any term 0 ? Give reason for your answer.

Solution: Here, $a=21, d=18-21=-3$ and $a n=-75$, and we have to find n.

As $a_{n}=a+(n-1) d$,
we have $-81=21+(n-1)(-3) \Rightarrow-75=24-3 n \Rightarrow 3 n=24+75 \Rightarrow 3 n=99$

So, $\mathrm{n}=33$; Therefore, the 33th term of the given AP is -75 .

Next, we want to know if there is any n for which an $=0$. If such an n is there, then
$21+(n-1)(-3)=0 \Rightarrow$ i.e., $3(n-1)=21 \Rightarrow$ i.e., $n=8$

So, the eighth term is 0 .

Question: 3. Determine the AP whose 3rd term is 5 and the 7th term is 9.
Solution: We have, $a 3=5 \Rightarrow a+(3-1) d=a+2 d=5$ \qquad
and $\mathrm{a}_{7}=9 \Rightarrow \mathrm{a}+(7-1) \mathrm{d}=\mathrm{a}+6 \mathrm{~d}=9$

Solving the pair of linear equations (i) and (ii),

$$
\Rightarrow(a+2 d)-(a+6 d)=5-9 \Rightarrow a+2 d-a-6 d=-4 \Rightarrow-4 d=-4 \Rightarrow d=1
$$

Put this value in eq. (i) $a+2 \times 1=5 \Rightarrow a=5-2=3$,

Hence, the required AP is $3,4,5,6,7, \ldots$

Jsurll tumoinl
 ACBSE Coaching for Ohathematies and Science

Question: 4. Check whether 202 is a term of the list of numbers $5,11,17,23, \ldots$

Solution: We have : $a=5$ and $d=6$.

Let 202 is the nth term of this AP.
$\Rightarrow a_{n}=a+(n-1) d \Rightarrow 202=5+(n-1) \times 6 \Rightarrow 202=6 n-1$

So, $6 \mathrm{n}=203 \Rightarrow \mathrm{n}=\frac{203}{6}=33.83$

But n cannot be fractional number so ,202 is not a term of the given AP

Question: 5. How many three-digit numbers are divisible by 3?
Solution: The list of three-digit numbers divisible by 3 is:

102, 105, $108 \ldots 999$

This an AP as common difference is $3 \Rightarrow a=102, d=3$, $a n=999$.

As $a n=a+(n-1) d$,
we have $999=102+(n-1) \times 3 \Rightarrow 999-102=(n-1) \times 3 \Rightarrow 897=(n-1) \times 3$
$\Rightarrow \frac{897}{3}=n-1 \Rightarrow 299=n-1 \Rightarrow n=299+1=300$
So, there are 300 three - digit numbers divisible by 3 .
Question: 6. the fourth term of an A.P. is 11 . The sum of the fifth and seventh terms of the A.P. is 34 . Find its common difference.

Solution: Let the first term be a and the common difference be d

The fourth term of an A.P. is 11
$\Rightarrow \mathrm{a}+3 \mathrm{~d}=11$ \qquad (i)

The sum of the fifth and seventh terms of the A.P. is 34
$\Rightarrow(\mathrm{a}+4 \mathrm{~d})+(\mathrm{a}+6 \mathrm{~d})=34 \Rightarrow \mathrm{a}+5 \mathrm{~d}=17$

Solving (i) \& (ii) you get $\Rightarrow \mathrm{a}=2, \mathrm{~d}=3$

Jsuril turomal
 ACBSE Coaching for 9(athematics and Science

Question: 7. In an A.P., if the 12th term is -13 and the sum of its first four terms is 24 , find the sum of its first ten terms.

Solution: Let the first term be a and the common difference be d

The 12 th term is $-13 \Rightarrow a+11 d=-13$ \qquad (i) $1 / 2 \mathrm{~m}$

The sum of its first four terms is 24 ,
$\Rightarrow \mathrm{S}_{4}=24 \Rightarrow 4 / 2[2 \mathrm{a}+(4-1) \mathrm{d}=24 \Rightarrow 2[2 \mathrm{a}+3 \mathrm{~d}]=24 \Rightarrow 2 \mathrm{a}+3 \mathrm{~d}=12$ \qquad (ii)

Solving (i) and (ii) $\mathrm{a}=9, \mathrm{~d}=-2$
Thus $\mathrm{S}_{10}=10 / 2[2 \times 9+(10-1) \times(-2)]=5[18-18]=0$

Question: 8. Find the middle term of the sequence formed by all three-digit numbers which leave a remainder 3, when divided by 4 . Also find the sum of all numbers on both sides of the middle term separately.

Solution: The three digit number which leave remainder 3 when divided by 4 are
$103,107,111,------, 999 \Rightarrow a=103, d=4$
$\mathrm{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \Rightarrow 999=103+(\mathrm{n}-1) 4 \Rightarrow \mathrm{n}=225$
Therefore $\frac{225+1}{2}=113$ th term is middle term
$T_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \Rightarrow$ Middle term $=\mathrm{T}_{103}=103+112 \times 4=551$

Sum of first 112 terms $=\frac{112}{2}[2 \times 113+11 \times 4]=56(226+111 \times 4)=36400$
$\mathrm{T}_{104}=551+4=555$
Sum of last 112 terms $=\frac{112}{2}[(2 \times 555+111 \times 4)=56[(1110+111 \times 4)=56 \times 1554=87024$

Question: 9. Find the Middle term of the AP: 6, 13, 20, ---------, 216
Solution The given A.P. is 6, 13, 20, ---, 216
Let n be the number of terms, $\mathrm{d}=7, \mathrm{a}=6$ and $\mathrm{t}_{\mathrm{n}}=216$
$\Rightarrow 216=6+(\mathrm{n}-1) .7 \Rightarrow \mathrm{n}=31$
\square Middle term is $\frac{31+1}{2}=16$ th term

JSINIL HITIOB:L

 ACBSE Coaching for Shathematics and Science

 ACBSE Coaching for Shathematics and Science}

$$
\mathrm{t}_{16}=6+15 \times 7=111
$$

Question: 10. If S_{n}, denotes the sum of first nth terms of an AP.,
Show that $\mathrm{S}_{12}=3\left(\mathrm{~S}_{8}-\mathrm{S}_{4}\right)$
Solution Let a be the first term and d the common difference
$\mathrm{S}_{12}=6[2 \mathrm{a}+11 \mathrm{~d}]=12 \mathrm{a}+66 \mathrm{~d}$
$\mathrm{S}_{8}=4[2 \mathrm{a}+7 \mathrm{~d}]=8 \mathrm{a}+28 \mathrm{~d}$
$S_{4}=2[2 a+3 d]=4 a+6 d$
$3\left(\mathrm{~S}_{8}-\mathrm{S}_{4}\right)=3(4 \mathrm{a}+22 \mathrm{~d})=12 \mathrm{a}+66 \mathrm{~d}=\mathrm{S}_{12}$
Question: 11. Ramkali require Rs. 2500 after 12 weeks to send her daughter to school. She Saved Rs. 100 in the first week and increases her weekly saving by Rs. 20 every weeek. Find weather she will be able to send her daughter to school after 12 weeeks .

What value is generated in the above situation?
Solution Money required for Ramkate for admission of daughter $=\mathrm{S}_{12}=$ Rs. 2500 A.P. formed by saving $100,120,140,------\quad$ up to 12 terms
$S_{12}=\frac{12}{2}[2 \times 100+11 \times 20]=6 \times 420=$ Rs. 2520
She can get her doughter admitied
Value : Small saving can fulfill your big desires or any else
Question: 12 Find the 60th term of the AP 8, 10, 12, ..., if it has a total of 60 terms and hence find the sum of its last 10 terms.

Solution

$$
\begin{aligned}
& a=8 \text { and } d=2 ; \text { Now, } T_{n}=a+(n-1) d \Rightarrow t_{60}=8+59 \times 2=126 \text { sum } \\
& \text { of last } 10 \text { terms }=t_{51}+t_{52}----+t_{60} \\
& t_{51}=8+50 \times 2=108
\end{aligned}
$$

Sum of last 10 terms $=\frac{10}{2}[108 \times 2+9 \times 2]$

$$
=5[216+18]=234 \times 5=1170
$$

Question: 13. Find the 11th term from the last term (towards the first term) of the AP: 10, 7, 4, (-71) .
Solution: $\mathrm{a}=-71 ; \mathrm{d}=3$ and $\mathrm{n}=11 \Rightarrow \mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\Rightarrow \mathrm{t}_{11}=-71+10 \times 3=-71+30=-41$

Prove that $S_{n}-S_{n-1}=t_{n}$

