9th Quadrilateral NCERT Solved Questions

E Coaching for Mathematics and S

EXERCISE 8.1

- Q.1. The angles of a quadrilateral are in the ratio 3:5:9:13. Find all the angles of the quadrilateral.
- **Sol.** Suppose the measures of four angles are 3x, 5x, 9x and 13x.

 \therefore 3x + 5x + 9x + 13x = 360° [Angle sum property of a quadrilateral] $30x = 360^{\circ}$ \Rightarrow

 $x = \frac{360^{\circ}}{30} = 12^{\circ}$ \Rightarrow $3x = 3 \times 12^{\circ} = 36^{\circ}$ \Rightarrow $5x = 5 \times 12^\circ = 60^\circ$ $9x = 9 \times 12^{\circ} = 108^{\circ}$ $13x = 13 \times 12^{\circ} = 156^{\circ}$

: the angles of the quadrilateral are 36°, 60°, 108° and 156° Ans.

Q.2. If the diagonals of a parallelogram are equal, then show that it is a rectangle.

Sol. Given : ABCD is a parallelogram in which AC = BD. To Prove : ABCD is a rectangle.

Proof : In $\triangle ABC$ and $\triangle ABD$ AB = AB[Common] BC = AD[Opposite sides of a parallelogram] AC = BD[Given] $\therefore \Delta ABC \cong \Delta BAD$ [SSS congruence] ∠ABC = ∠BAD ...(i) [CPCT] Since, ABCD is a parallelogram, thus, $\angle ABC + \angle BAD = 180^{\circ}$...(ii) [Consecutive interior angles] $\angle ABC + \angle ABC = 180^{\circ}$ $2\angle ABC = 180^{\circ}$ *.*.. [From (i) and (ii)] $\angle ABC = \angle BAD = 90^{\circ}$ \Rightarrow This shows that ABCD is a parallelogram one of whose angle is 90°. Hence, ABCD is a rectangle. Proved.

- Q.3. Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.
- Sol. Given : A quadrilateral ABCD, in which diagonals AC and BD bisect each other at right angles.

To Prove : ABCD is a rhombus.

Page -01

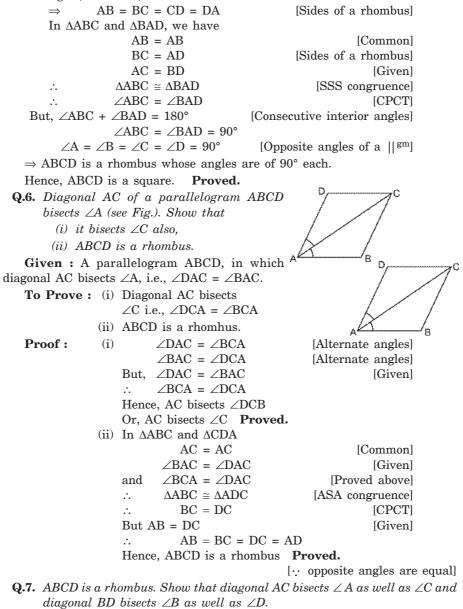
Proof : In $\triangle AOB$ and $\triangle BOC$ AO = OC[Diagonals AC and BD bisect each other] $[Each = 90^\circ]$ ∠AOB = ∠COB BO = BO[Common] $\therefore \Delta AOB \cong \Delta BOC$ [SAS congruence] AB = BC...(i) [CPCT] Since, ABCD is a quadrilateral in which AB = BC[From (i)] Hence, ABCD is a rhombus. $[\cdot : if the diagonals of a quadrilateral bisect each other, then it is a$ parallelogram and opposite sides of a parallelogram are equal] Proved. Q.4. Show that the diagonals of a square are equal and bisect each other at right angles. Sol. Given : ABCD is a square in which AC and BD are diagonals. To Prove : AC = BD and AC bisects BD at right angles, i.e. $AC \perp BD$. AO = OC, OB = OD**Proof** : In \triangle ABC and \triangle BAD, AB = AB[Common] BC = AD[Sides of a square] $\angle ABC = \angle BAD = 90^{\circ}$ [Angles of a square] $\triangle ABC \cong \triangle BAD$ *.*... [SAS congruence] \Rightarrow AC = BD[CPCT] Now in $\triangle AOB$ and $\triangle COD$, AB = DC[Sides of a square] ∠AOB = ∠COD [Vertically opposite angles] ∠OAB = ∠OCD [Alternate angles] *.*.. $\triangle AOB \cong \triangle COD$ [AAS congruence] ∠AO = ∠OC [CPCT] Similarly by taking $\triangle AOD$ and $\triangle BOC$, we can show that OB = OD. In $\triangle ABC$, $\angle BAC + \angle BCA = 90^{\circ}$ $[:: \angle B = 90^{\circ}]$ $\Rightarrow 2 \angle BAC = 90^{\circ}$ $[\angle BAC = \angle BCA$, as BC = AD] $\Rightarrow \angle BCA = 45^{\circ}$ or $\angle BCO = 45^{\circ}$ Similarly $\angle CBO = 45^{\circ}$ In $\triangle BCO$. $\angle BCO + \angle CBO + \angle BOC = 180^{\circ}$ \Rightarrow 90° + \angle BOC = 180° $\Rightarrow \angle BOC = 90^{\circ}$ \Rightarrow BO \perp OC \Rightarrow BO \perp AC Hence, AC = BD, $AC \perp BD$, AO = OC and OB = OD. **Proved.** Q.5. Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square. D

SE Coaching for Mathematics and Science

Sol. Given : A quadrilateral ABCD, in which diagonals AC and BD are equal and bisect each other at right angles,To Prove : ABCD is a square.

Proof: Since ABCD is a quadrilateral whose diagonals bisect each other, so it is a parallelogram. Also, its diagonals bisect each other at right angles, therefore, ABCD is a rhombus.

SE Coaching for Mathematics and Science



Sol. Given : ABCD is a rhombus, i.e., AB = BC = CD = DA.To Prove : $\angle DAC = \angle BAC$,

A

CBSE Coaching for Mathematics and Science

 $\angle BCA = \angle DCA$ $\angle ADB = \angle CDB, \angle ABD = \angle CBD$ **Proof** : In \triangle ABC and \triangle CDA, we have AB = AD[Sides of a rhombus] AC = AC[Common] BC = CD[Sides of a rhombus] $\triangle ABC \cong \triangle ADC$ [SSS congruence] So, ∠DAC = ∠BAC [CPCT] $\angle BCA = \angle DCA$ Similarly, $\angle ADB = \angle CDB$ and $\angle ABD = \angle CBD$. Hence, diagonal AC bisects $\angle A$ as well as $\angle C$ and diagonal BD bisects $\angle B$ as well as $\angle D$. **Proved. Q.8.** ABCD is a rectangle in which diagonal AC bisects $\angle A$ as well as $\angle C$. Show that : (i) ABCD is a square (ii) diagonal BD bisects $\angle B$ as well as $\angle D$. **Sol.** Given : ABCD is a rectangle in which diagonal AC bisects $\angle A$ as well as ∠C. To Prove: (i) ABCD is a square. D C (ii) Diagonal BD bisects $\angle B$ as well as $\angle D$. **Proof** : (i) In \triangle ABC and \triangle ADC, we have $\angle BAC = \angle DAC$ [Given] В А $\angle BCA = \angle DCA$ [Given] AC = AC $\therefore \Delta ABC \cong \Delta ADC$ [ASA congruence] AB = AD and CB = CD [CPCT] But, in a rectangle opposite sides are equal, i.e., AB = DC and BC = AD \therefore AB = BC = CD = DA Hence, ABCD is a square **Proved.** (ii) In $\triangle ABD$ and $\triangle CDB$, we have AD = CDAB = CD[Sides of a square] BD = BD[Common] $\therefore \quad \Delta ABD \cong \Delta CBD$ [SSS congruence] So, ∠ABD = ∠CBD [CPCT] ∠ADB = ∠CDB Hence, diagonal BD bisects $\angle B$ as well as $\angle D$ **Proved.** Q.9. In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (see Fig.). Show that : (i) $\triangle APD \cong \triangle CQB$ (ii) AP = CQ(*iii*) $\Delta AQB \cong \Delta CPD$

(iv) AQ = CP

(v) APCQ is a parallelogram

Page - 04

Sol. Given : ABCD is a parallelogram and P and Q are

- points on diagonal BD such that DP = BQ.
- To Prove : (i) $\triangle APD \cong \triangle CQB$
 - (ii) AP = CQ
 - (iii) $\triangle AQB \cong \triangle CPD$
 - (iv) AQ = CP
 - (v) APCQ is a parallelogram (i) In $\triangle APD$ and $\triangle CQB$, we have

Proof:

AD = BC[Opposite sides of a ||gm] DP = BQ[Given] $\angle ADP = \angle CBQ$ [Alternate angles] $\therefore \quad \Delta APD \ \cong \ \Delta CQB$ [SAS congruence] (ii) \therefore AP = CQ [CPCT] (iii) In $\triangle AQB$ and $\triangle CPD$, we have AB = CD[Opposite sides of a ||gm] DP = BQ[Given] $\angle ABQ = \angle CDP$ [Alternate angles] $\therefore \Delta AQB \cong \Delta CPD$ [SAS congruence]

SE Coaching for Mathematics and Science

(iv)
$$\therefore$$
 AQ = CP

[CPCT] (v) Since in APCQ, opposite sides are equal, therefore it is a parallelogram. Proved.

Q.10. ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (see Fig.). Show that (i) $\triangle APB \cong \triangle CQD$

$$(i) \quad AP = CQ$$

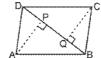
Sol. Given : ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on BD.

To Prove : (i) $\triangle APB \cong \triangle CQD$ (ii) AP = CQ

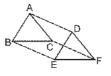
Proof:

(i) In $\triangle APB$ and $\triangle CQD$, we have

- $\angle ABP = \angle CDQ$
- ∠APB = ∠CQD $\therefore \Delta APB \cong \Delta CQD$
- (ii) So, AP = CQ



- [Alternate angles] AB = CD [Opposite sides of a parallelogram] $[Each = 90^\circ]$ [ASA congruence] [CPCT] Proved.
- **Q.11.** In $\triangle ABC$ and $\triangle DEF$, AB = DE, $AB \parallel DE$, BC= EF and BC || EF. Vertices A, B and C are joined to vertices D, E and F respectively (see Fig.). Show that
 - (i) quadrilateral ABED is a parallelogram
 - (ii) quadrilataeral BEFC is a parallelogram
 - (iii) $AD \parallel CF and AD = CF$
 - (iv) quadrilateral ACFD is a parallelogram
 - (v) AC = DF
 - (vi) $\triangle ABC = \triangle DEF$



Page - 05

ACBSE Coaching for Mathematics and Science

 Sol. Given : In DABC and DDEF, AB AB DE, BC = EF and BC EF. Vertiand C are joined to vertices D, E and F. To Prove : (i) ABED is a parallelogram (ii) BEFC is a parallelogram (iii) AD CF and AD = CF (iv) ACFD is a parallelogram (v) AC = DF (vi) ΔABC ≅ ΔDEF 	ices A, B
Proof : (i) In quadrilateral ABED, we	
$AB = DE \text{ and } AB \parallel$	
\Rightarrow ABED is a parallelogram	n. site sides is parallel and equal]
(ii) In quadrilateral BEFC, we	
$BC = EF \text{ and } BC \parallel EF$	[Given]
\Rightarrow BEFC is a parallelogram	
[One pair of oppos	site sides is parallel and equal]
(iii) $BE = CF$ and $BE BECF$	
AD = BE and AD BE	[ABED is a parallelogram]
\Rightarrow AD = CF and AD CF	
(iv) ACFD is a parallelogram.	
	site sides is parallel and equal]
	e sides of parallelogram ACFD]
(vi) In $\triangle ABC$ and $\triangle DEF$, we hat $AB = DE$	[Given]
AB = DE $BC = EF$	[Given]
AC = DF	[Proved above]
$\therefore \Delta ABC \cong \Delta DEF$	[SSS axiom] Proved.
Q.12. ABCD is a trapezium in which AB	[,,
$ $ CD and $\overrightarrow{AD} = BC$ (see Fig.).	A 8 /
Show that	$\hat{}$
$(i) \ \angle A = \angle B$	
$(ii) \ \angle C = \angle D$	D
(iii) $\triangle ABC \cong \triangle BAD$ (iv) diagonal AC = diagonal BD	
Sol. Given : In trapezium ABCD, AB $ $ CD a	and $AD - BC$
To Prove : (i) $\angle A = \angle B$	ling AD = DO.
(ii) $\angle C = \angle D$	
(iii) $\triangle ABC \cong \triangle BAD$	л р /Е
(iv) diagonal AC = diagonal BD	
Constructions : Join AC and BD. Extend A a line through C parallel to DA meeting A	AB and draw

E Coaching for Mathematics and S Science

Proof: (i) Since AB || DC AE || DC ...(i) \Rightarrow AD || CE and ...(ii) [Construction] \Rightarrow ADCE is a parallelogram [Opposite pairs of sides are parallel $\angle A + \angle E = 180^{\circ}$...(iii) [Consecutive interior angles] $\angle B + \angle CBE = 180^{\circ}$...(iv) [Linear pair] [Opposite sides of a ||^{gm}] AD = CE...(v) AD = BC...(vi) [Given] BC = CE[From (v) and (vi)] \Rightarrow $\angle E = \angle CBE$...(vii) [Angles opposite to \Rightarrow equal sides] ...(viii) [From (iv) and (vii) $\therefore \angle B + \angle E = 180^{\circ}$ Now from (iii) and (viii) we have $\angle A + \angle E = \angle B + \angle E$ $\angle A = \angle B$ **Proved.** \Rightarrow $\angle A + \angle D = 180^{\circ}$ (ii) [Consecutive interior angles] $\angle B + \angle C = 180^{\circ}$ $[\because \angle A = \angle B]$ $\Rightarrow \angle A + \angle D = \angle B + \angle C$ $\angle D = \angle C$ \Rightarrow Or $\angle C = \angle D$ **Proved.** (iii) In $\triangle ABC$ and $\triangle BAD$, we have AD = BC [Given] $\angle A = \angle B$ [Proved] AB = CD[Common] $\therefore \Delta ABC \cong \Delta BAD$ [ASA congruence] (iv) diagonal AC = diagonal BD [CPCT] Proved.

- Q.1. ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. (see Fig.). AC is a diagonal. Show that:
 - (i) $SR \mid \mid AC \text{ and } SR = \frac{1}{2}AC$
 - (ii) PQ = SR
 - (iii) PQRS is a parallelogram.

Given : ABCD is a quadrilateral in which P, Q, R and S are mid-points of AB, BC, CD and DA. AC is a diagonal.

To Prove : (i) SR || AC and SR = $\frac{1}{2}$ AC

(ii)
$$PQ = SR$$

- (iii) PQRS is a parallelogram
- **Proof**:
- (i) In $\triangle ABC$, P is the mid-point of AB and Q is the mid-point of BC.



$$\therefore$$
 PQ || AC and PQ = $\frac{1}{2}$ AC ...(1)
[Mid-point theorem]

E Coaching for Mathematics and Science

In $\Delta ADC,\,R$ is the mid-point of CD and S is the mid-point of AD

$$\therefore$$
 SR || AC and SR = $\frac{1}{2}$ AC ...(2)

[Mid-point theorem]

- (ii) From (1) and (2), we get PQ || SR and PQ = SR
- (iii) Now in quadrilateral PQRS, its one pair of opposite sides PQ and SR is equal and parallel.
 - : PQRS is a parallelogram. Proved.
- **Q.2.** ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.
- **Sol.** Given : ABCD is a rhombus in which P, Q, R and S are mid points of sides AB, BC, CD and DA respectively :

To Prove : PQRS is a rectangle. **Construction :** Join AC, PR and SQ. **Proof :** In ΔABC P is mid point of AB [Given] Q is mid point of BC [Given]

SK L

S A P B

 $\Rightarrow PQ \mid\mid AC \text{ and } PQ = \frac{1}{2}AC \dots(i) \quad [Mid \text{ point theorem}]$ Similarly, in ΔDAC ,

SR || AC and SR =
$$\frac{1}{2}$$
AC ...(ii)

From (i) and (ii), we have PQ | |SR and $PQ = SR \Rightarrow PQRS$ is a parallelogram

[One pair of opposite sides is parallel and equal] Since ABQS is a parallelogram

 $\Rightarrow AB = SQ$ [Opposite sides of a || gm]

Similarly, since PBCR is a parallelogram.

 \Rightarrow BC = PR

Thus, SQ = PR [AB = BC]

Since SQ and PR are diagonals of parallelogram PQRS, which are equal. \Rightarrow PQRS is a rectangle. **Proved.**

- **Q.3.** ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilataral PQRS is a rhombus.
- Sol. Given : A rectangle ABCD in which P, Q, R, S are the mid-points of AB, BC, CD and DA respectively, PQ, QR, RS and SP are joined.
 To Prove : PQRS is a rhombus.
 Construction : Join AC

Proof: In ${\vartriangle}ABC,$ P and Q are the mid-points of the sides AB and BC.

SE Coaching for Mathematics and Science

 \therefore PQ || AC and PQ = $\frac{1}{2}$ AC ...(i) [Mid point theorem] Similarly, in $\triangle ADC$, SR || AC and SR = $\frac{1}{2}$ AC ...(ii) From (i) and (ii), we get $PQ \parallel SR$ and PQ = SR...(iii) Now in quadrilateral PQRS, its one pair of opposite sides PQ and SR is parallel and equal [From (iii)] ∴ PQRS is a parallelogram. AD = BCNow ...(iv) [Opposite sides of a rectangle ABCD] $\frac{1}{2}$ AD = $\frac{1}{2}$ BC *.*.. AS = BQ \Rightarrow In $\triangle APS$ and $\triangle BPQ$ AP = BP[: P is the mid-point of AB] AS = BQ[Proved above] $\angle PAS = \angle PBQ$ $[Each = 90^\circ]$ $\Delta APS \cong \Delta BPQ$ [SAS axiom] PS = PQ*.*.. ...(v) From (iii) and (v), we have PQRS is a rhombus Proved.

- **Q.4.** ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F (see Fig.). Show that F is the mid-point of BC.
- **Sol. Given :** A trapezium ABCD with AB || DC, E is the mid-point of AD and EF || AB.

To Prove : F is the mid-point of BC.

Proof : AB || DC and EF || AB

 \Rightarrow AB, EF and DC are parallel.

Intercepts made by parallel lines AB, EF and DC on transversal AD are equal.

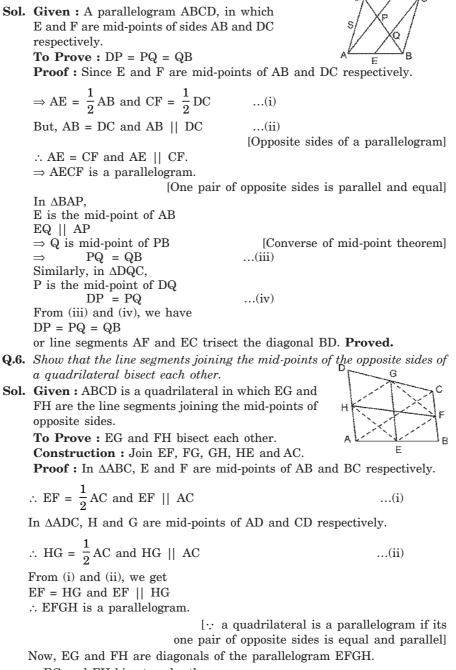
 \therefore Intercepts made by those parallel lines on transversal BC are also equal.

i.e., BF = FC

 \Rightarrow F is the mid-point of BC.

Q.5. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see Fig.). Show that the line segments AF and EC trisect the diagonal BD.

ACBSE Coaching for Mathematics and Science



 \therefore EG and FH bisect each other.

[Diagonal of a parallelogram bisect each other] Proved.

Q.7. ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that (i) D is the mid-point of AC. (ii) $MD \perp AC$ (*iii*) $CM = MA = \frac{1}{2}AB$ **Sol.** Given : A triangle ABC, in which $\angle C = 90^{\circ}$ and M is the mid-point of AB and BC || DM. To Prove: (i) D is the mid-point of AC [Given] (ii) $DM \perp BC$ (iii) CM = MA = $\frac{1}{2}$ AB c l Construction : Join CM. **Proof**: (i) In $\triangle ABC$, M is the mid-point of AB. [Given] BC $\mid\mid$ DM [Given] D is the mid-point of AC [Converse of mid-point theorem] Proved. [·: Coresponding angles] (ii) ∠ADM = ∠ACB $\angle ACB = 90^{\circ}$ [Given] But $\angle ADM = 90^{\circ}$ *.*•. But $\angle ADM + \angle CDM = 180^{\circ}$ [Linear pair] $\angle \text{CDM} = 90^{\circ}$ *:*.. Hence, $MD \perp AC$ **Proved.** (iii) $AD = DC \dots (1)$ [: D is the mid-point of AC] Now, in \triangle ADM and \triangle CMD, we have ∠ADM = ∠CDM $[Each = 90^\circ]$ AD = DC[From (1)] DM = DM[Common] $\Delta ADM \cong \Delta CMD$ [SAS congruence] *.*.. ...(2) [CPCT] CM = MA \Rightarrow Since M is mid-point of AB, $MA = \frac{1}{2}AB$ *.*.. ...(3)

E Coaching for Mathematics and

Hence, $CM = MA = \frac{1}{2}AB$ **Proved.** [From (2) and (3)]