BSE Coaching for Mathematics and Science

Class 09 Chapter – Circle CBSE Test Paper – 05

1. In the given figure, O is the centre of the circle < OAB = 30 and < OCB = 40. Calculate < AOC.

2. In the given figure, O is the centre of the circle and < AOC = 130. Find < ABC.

3. In the given figure, O is the centre of the circle and < AOB = 1100. Calculate (i) <ACO (ii) <CAO.

4. In the given figure, AB || D and < BAD = 100. Calculate: (i) < BCD (ii) < ADC (iii) < ABC.

5. In the given figure, <ACB = 52 and < BDC = 43 Calculate (i) <ADB (ii) <BAC (iii) <ABC.

6. In the given figure, O is the centre of the circle. If <AOB = 140 and <OAC = 50, find (i) <ABC (ii) <BCO (iii) <OAB (iv) <BCA.

7. In the given figure, <BAD = 70, <ABD = 56 and <aDC = 72. Calculate (i) <DBC (ii) <BCD (iii) <BCA

JSUNIL TUTORIAL

ACBSE Coaching for Mathematics and Science

8. In the given figure, O is the centre of the circle. If $\langle ADC = 140, \text{ find } \langle BAC. \rangle$

9. In the given figure, O is the centre of the circle and Δ ABC is equilateral. Find (i) < BDC (ii) < BEC.

10. In the given figure, O is the centre of the circle and $\langle AOC = 1600 \rangle$. Prove that $3 \langle y - 2 \langle x = 140 \rangle$

11. In the given figure, O is the centre of the circle. If <CBD = 25 and <APB = 120, find <ADB.

12. (i) In the given figure, AOB is a diameter of the circle O and <AOC = 100, find <BDC.

(ii) In the given figure, O is the centre of the circle; AOD = 40 and BDC = 100. Find OCB.

13. In the figure, AB is parallel to DC, <BCE = 80 and <BAC = 25. Find : (i) <CAD (ii) <CBD (iii) < ADC.

14. In the given figure, O is the centre of the circle and ⟨ OBC = 50 Calculate (i) ⟨ ADC (ii) ⟨ AOC.

JSUNIL TUTORIAL

ACBSE Coaching for Mathematics and Science

15. In the given figure, ABCD is a cyclic quadrilateral in which < CAD = 25, \square ABC = 50 and < ACB = 35. Calculate

(i) \leq CBD (ii) \leq DAB (iii) \leq ADB

16. In the adjoining figure, $\square BAD = 650$, $\square ABD = 700$ and $\square BDC = 450$. Find (i) $\square BCD$ (ii) $\square ADB$ Hence, show that

AC is a diameter.

17. In the given figure, AB is a diameter of a circle with centre O and chord ED is parallel to AB and \Box EAB = 650

Calculate (i) <EBA (ii) < BED (iii) < BCD

18. In the given figure, ABCD is a cyclic quadrilateral whose side CD has been produced to E. If BA = BC and < BAC

= 46, find $\langle ADE$.

19. In the given figure, O is the centre of a circle and ABE is a straight line. If <CBE = 55, find : (i) <ADC (ii) < ABC (iii) the value of x.

20. In the given figure AB and CD are two parallel chords of a circle. If BDE and ACE are straight lines, intersecting

at E, prove that $\triangle AEB$ is isosceles.

JSUNIL TUTORIAL

ACBSE Coaching for Mathematics and Science

21. In the given figure, chords AB and CD of a circle are produced to meet at O. Prove that \langle ODB and \langle OAC are similar. If BO = 3 cm, DO = 6 cm and CD = 2 cm, find AB.

22. In the given figure, O is the centre of the circle, If <AOD = 140 and < CAB = 50, calculate : (i) <EDB (ii) <EBD

23. In the given figure, AB is diameter of a circle with centre O. If ADE and CBE are straight lines, meeting at E such that < BAD = 35 and <BED = 25, find : (i) <DCB (iii) <DBC (iii) <BDC

24. In the given figure, find whether the points A, B, C, D are concyclic, when (i) x = 70 (ii) x = 80

25. In the given figure, the straight lines AB and CD pass through the centre O of the circle. if $\langle AOD = 750 \rangle$ and

< OCE = 40, find (i) < CDE (ii) < OBE.

26. In the given figure, the two circles intersect at P and Q. If $\langle A = 80 \text{ and } \langle D = 84 \text{ calculate } :(i) \langle QBC \text{ (ii)} \rangle$

27. In the adjoining figure, AB = AC = CD, <ADC = 35. Calculate : (i) <ABC (ii) <BEC

BSE Coaching for Mathematics and Science

28. In the adjoining figure, two circles intersect at A and B. The centre of the smaller circle is O and lies on the circumference of the larger circle. If PAC and PBD are straight lines and $\langle APB = 75$, find (i) $\langle AOB (ii) \langle$ ACB (iii) <ADB.

29. The exterior angles B and C in □ABC are bisected to meet at a point P. Prove that $\langle BPC = 90 - \frac{A}{2} \rangle$. Is ABPC a cyclic quadrilateral?

30. In the given figure, is the incentre of \triangle ABC. AT produced meets the circum circle of Δ ABC at D: $\langle ABC = 55 \text{ and } \langle ACB = 65. \text{ Calculate : (i)} \langle BCD \text{ (ii)} \rangle$ <CBD (iii) <DCI (iv) <BIC

Solution:

4. (i)
$$\angle$$
BCD = 80⁰ (ii) \angle ADC = 80⁰ (ii) \angle ABC = 100⁰

5. (i)
$$\angle ADB = 52^{\circ}$$
 (ii) $\angle BAC = 43^{\circ}$ (iii) $\angle ABC = 85^{\circ}$

6. (i)
$$\angle ABC = 40^{\circ}$$
 (ii) $\angle BCO = 60^{\circ}$ (iii) $\angle OAB = 20^{\circ}$ (iv) $\angle BCA = 110^{\circ}$

7. (i)
$$\angle$$
BDC = 180 0 (ii) \angle BCD = 60 0 (iii) \angle BCA = 54 0

8.
$$\angle$$
BAC = 50⁰ **9.** (i) \angle BDC = 60⁰ (iii) \angle BEC = 120⁰ **10.** (i) \angle BAD = 62.5⁰ (ii) \angle BCD = 117⁵⁰

14. (i)
$$\angle ADC = 130^{\circ}$$
 (ii) $\angle AOC = 100^{\circ}$

17. (i)
$$\angle$$
EBA = 25 $^{\circ}$ (ii) \angle BED = 25 $^{\circ}$ (iii) \angle BCD = 155 $^{\circ}$ **18.** 88 $^{\circ}$

19. (i)
$$\angle ADC = 55^{\circ}$$
 (ii) $\angle ABC = 125^{\circ}$ (iii) $x = 250^{\circ}$

10. (i)
$$\angle$$
BAD = 62.5⁰ (ii) \angle BCD = 117⁵⁰

13. (i)
$$\angle$$
CAD = 55 $^{\circ}$ (ii) \angle CBD = 55 $^{\circ}$ (iii) \angle ADC - 100 $^{\circ}$

23. (i)
$$\angle$$
DCB = 35⁰ (ii) \angle DBC = 115⁰ (iii) \angle DBC = 30⁰

25. (i)
$$\angle$$
CDE = 50° (ii) \angle OBE = 25° **26.** (i) \angle QBC = 100° (ii) \angle BCP = 96°

27. (i)
$$\angle$$
ABC = 40⁰ (ii) \angle BEC = 40⁰

24. (i) Yes (ii) No.

29. No **30.** (i)
$$\angle BCD = 25^{\circ}$$
 (ii) $\angle CBD = 35^{\circ}$ (iii) $\angle DCI = 55^{\circ}$ (iv) $\angle BIC = 120^{\circ}$