
 ACBSE Coaching for Olathematics and Science

CBSE TEST PAPER SOLVED

CLASS - X Mathematics (Similar Triangle): Optional Exercise Solved

1. Q. Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, how much string does she have out (see Fig. 6.64)? If she pulls in the string at the rate of 5 cm per second, what will be the horizontal distance of the fly from her after 12 seconds?

$\triangle A B C, A C^{2}=A B^{2}+B C^{2}=(1.8 m)^{2}+(2.4 m)^{2}$
$A B^{2}=(3.24+5.76) \mathrm{m}^{2} \Rightarrow A B=\sqrt{ } 9.00 \mathrm{~m}^{2}$
$A B=3 m$
Thus, the length of the string out is 3 m .
String pulled in 12 seconds at the rate of 5 cm per second. $=$
$12 \times 5=60 \mathrm{~cm}=0.6 \mathrm{~m}$
String above water $=A D=(A C-0.6) m=3-0.6=2.4 \mathrm{~m}$
In $\triangle A D B, A B^{2}+B D^{2}=A D^{2}$
$(1.8 \mathrm{~m})^{2}+\mathrm{BD}^{2}=(2.4 \mathrm{~m})^{2} \quad B D^{2}=(5.76-3.24) \mathrm{m}^{2}=2.52 \mathrm{~m}^{2} \quad \mathrm{BD}=1.587 \mathrm{~m}$
Horizontal distance of fly after $12 \mathrm{sec} .=B D+1.2 \mathrm{~m}=(1.587+1.2) \mathrm{m}=2.787 \mathrm{~m}=2.79 \mathrm{~m}$
2. Q. In the given figure, D is a point on side $B C$ of $\triangle A B C$ such that $B D / C D=A B / A C$ Prove that $A D$ is the bisector of $\angle B A C$.
Let us extend $B A$ to P such that $A P=A C$. Join $P C$.
It is given that, $B D / C D=A B / A C \Rightarrow B D / C D=A P / A C$
By using the converse of basic proportionality theorem, we obtain
AD || PC
$\Rightarrow \angle \mathrm{BAD}=\angle \mathrm{APC}$ (Corresponding angles) ... (1)

And, $\angle \mathrm{DAC}=\angle \mathrm{ACP}$ (Alternate interior angles) ... (2)
By construction, we have $\mathrm{AP}=\mathrm{AC}$
$\Rightarrow \angle A P C=\angle A C P$... (3)
From (1), (2), and (3), we obtain
$\angle B A D=\angle A P C \Rightarrow A D$ is the bisector of the angle BAC.
3. Q . In the given figure, two chords AB and CD of a circle intersect each other at the point P (when produced) outside the circle. Prove that
(i) \triangle PAC $\sim \triangle$ PDB
(ii) PA.PB = PC.PD

Sol: (i) In $\triangle P A C$ and $\triangle P D B$,
$\angle \mathrm{P}=\angle \mathrm{P}$ (Common)
$\angle \mathrm{PAC}+\angle \mathrm{CAB}=180^{\circ}$ also $\angle \mathrm{CAB}+\angle \mathrm{PDB}=180^{\circ}$

JSTINIL THTDBI:

ACBSE Coaching for OCathematics and Science
$\angle \mathrm{PAC}=\angle \mathrm{PDB}$
$\therefore \triangle \mathrm{PAC} \sim \triangle \mathrm{PDB}$ (AA similarity)
(ii)We know that the corresponding sides of similar triangles are proportional.

$$
\therefore \frac{\mathrm{PA}}{\mathrm{PD}}=\frac{\mathrm{AC}}{\mathrm{DB}}=\frac{\mathrm{PC}}{\mathrm{~PB}} \quad \Rightarrow \frac{\mathrm{PA}}{\mathrm{PD}}=\frac{\mathrm{PC}}{\mathrm{~PB}} \quad \mathrm{PA} \cdot \mathrm{~PB}=\mathrm{PC} \cdot \mathrm{PD}
$$

Q. In the given figure, two chords $A B$ and $C D$ intersect each other at the point P. prove that:
(i) $\triangle \mathrm{APC} \sim \triangle \mathrm{DPB}$ (ii) AP.BP $=\mathrm{CP} . D P$
(i) In $\triangle \mathrm{APC}$ and $\triangle \mathrm{DPB}$,
$\angle A P C=\angle D P B$ (Vertically opposite angles)

$\angle \mathrm{CAP}=\angle \mathrm{BDP}$ (Angles in the same segment)
$\triangle \mathrm{APC} \sim \triangle \mathrm{DPB}$ (By AA similarity)
(ii) We have $\triangle \mathrm{APC} \sim \triangle \mathrm{DPB}$

We know that the corresponding sides of similar triangles are proportional.
$\therefore \frac{A P}{D P}=\frac{P C}{P B}=\frac{C A}{B D} \quad \Rightarrow \frac{A P}{D P}=\frac{P C}{P B} \quad A P . P B=P C . D P$
4. Q. Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.

Sol: Let ABCD be a parallelogram.
Draw perpendicular DM on extended side $B C$ and $A L$ on side $B C$.
In $\triangle \mathrm{ABL}$ and $\triangle \mathrm{DMC}$
$\angle L=\angle N=90^{\circ} \quad A B=D M$ and $A L=D M$

$\Delta \mathrm{ABL} \cong \Delta \mathrm{DMC}$ (RHS)
$\mathrm{BL}=\mathrm{CM}(\mathrm{CPCT})$

Applying Pythagoras theorem in $\triangle A L C$, we obtain

$$
\begin{align*}
& A C^{2}=A L^{2}+L C^{2} \ldots(I) \\
& B D^{2}=B M^{2}+D M^{2}
\end{align*}
$$

Applying Pythagoras theorem in $\triangle D C M$, we obtain
Adding (i) and (ii)

$$
\begin{aligned}
A C^{2}+B D^{2} & =A L^{2}+L C^{2}+B M^{2}+D M^{2} \\
& =A B^{2}+B L^{z}+(B C-B L)^{2}+(B C+C M)^{2}+D C^{2}-C M^{z}[B L=C M] \\
& =A B^{2}+B C^{2}+B L^{2}-Z B C . B L+B C^{2}+C M^{z}+Z B C \cdot C M+D C^{2}-C M^{z} \\
A C^{2}+B D^{2} & =A B^{2}+B C^{2}+C D^{2}+D A^{2}
\end{aligned}
$$

5. Q . In the given figure, PS is the bisector of $\angle \mathrm{QPR}$ of $\triangle P Q R$. Prove that $\mathrm{QS} / \mathrm{SR}=\mathrm{PQ} / \mathrm{PR}$ Let us draw a line segment RT parallel to SP which intersects extended line segment QP at point T .
Given that, PS is the angle bisector of $\angle \mathrm{QPR}$.
$\angle \mathrm{QPS}=\angle \mathrm{PTR}$ also, $\angle \mathrm{SPR}=\angle \mathrm{PRT}$

Material downloaded from http://www.jsuniltutorial.weebly.com. A portal for CBSE Notes, Test Papers, Sample Papers, assignments with tips and tricks

JSTINIL THTDRI:

ACBSE Coaching for Olathematics and Science
But, $\angle \mathrm{QPS}=\angle \mathrm{SPR}$
$\angle \mathrm{PTR}=\angle \mathrm{PRT} \Rightarrow \therefore \mathrm{PT}=\mathrm{PR}$
By using basic proportionality theorem for

$$
\frac{\mathrm{QS}}{\mathrm{SR}}=\frac{\mathrm{QP}}{\mathrm{PT}} \Rightarrow \frac{\mathrm{QS}}{\mathrm{SR}}=\frac{\mathrm{PQ}}{\mathrm{PR}} \quad \Delta \mathrm{QTR}, \mathrm{PS} \| \mathrm{TR}
$$

6. Q. In the given figure, D is a point on hypotenuse $A C$ of $\triangle A B C, D M \perp B C$ and $D N \perp A B, B D \perp A C$ Prove that:
(i) $\mathrm{DM}^{2}=\mathrm{DN} . \mathrm{MC}$
(ii) $\mathrm{DN}^{2}=\mathrm{DM} . \mathrm{AN}$

In $\triangle \mathrm{BDM}$ and DMC
$<\mathrm{M}=<\mathrm{M}$
$\angle D C M+\angle M D C=\angle B D M+\angle M D C=90^{\circ}$
$\Rightarrow \angle D C M=<B D M$
Δ BDM $\sim \Delta$ DMC (AA similarity)
$D M / B M=M C / D M$

But, $B M=D N$
DM/ DN = MC/DM
$\mathrm{DM}^{2}=$ DN.MC proved.
Similarly we can prove DN ${ }^{2}=$ DM.AN
7. Q. In the given figure, $A B C$ is a triangle in which $\angle A B C>90^{\circ}$ and $A D \perp C B$ produced. Prove that $A C^{2}=A B^{2}+$ $B C^{2}+2 B C . B D$.
$A C^{2}=A B^{2}+B C^{2}+2 B C \cdot B D$.
Sol: $A C^{2}=A D^{2}+D C^{2}$

$$
\begin{aligned}
= & A B^{2}-D B^{2}+(D B+B C)^{2} \\
& =A B^{2}-D B^{2}+D B^{2}+B C^{2}+2 D B \times B C \\
A C^{2} \quad & =A B^{2}+B C^{2}+2 D B \times B C
\end{aligned}
$$

Q. 8 : In the given figure, $A B C$ is a triangle in which $\angle A B C<90^{\circ}$ and $A D \perp B C$. Prove that $A C^{2}=A B^{2}+B C^{2}-2 B C . B D$.
Sol: In $\triangle A D C, A C^{2}=A D^{2}+D C^{2}$
$\Rightarrow A C^{2}=A B^{2}-D B^{2}+D C^{2}$
$\Rightarrow A C^{2}=A B^{2}-D B^{2}+(B C-B D)^{2}$
$\Rightarrow A C^{2}=A B^{2}-D B^{2}+B C^{2}+B D^{2}-2 B C B D$
$A C^{2}=A B^{2}+B C^{2}-2 B C . B D$ Proved

