Chapter 8
 Similar Triangles

Similar Triangles:

Whenever we talk about two congruent figures then they have the 'same shape' and the 'same size'. There are figures that are of the 'same shape but not necessarily of the 'same size'. They are said to be similar. Congruent figures are similar but the converse is not true

All regular polygons of same number of sides are similar. They are equilateral triangles, squares etc. All circles are also similar.

Two polygons of the same number of sides are similar if their corresponding angles are sides are proportional.

Two triangles are similar if their corresponding are equal and corresponding sides are proportional.

Basic Proportionality Theorem or Thales Theorem.

Theorem-1

If a line is drawn parallel to one side of a triangle, to interest the other two sides indistinct points, the other two sides are divided in the same ratio.

Given: - In $\triangle A B C, D E \| B C$
To prove:- $\frac{A D}{D B}=\frac{A E}{E C}$
Construction:- BE and CD are joined. $E F \perp A B$ and $D N \perp A L$ are drawn.
Proof:-

Page 1

$$
\begin{aligned}
& \begin{aligned}
& \operatorname{ar}(\triangle A D E)= \frac{1}{2} \times A D \times E F \\
&=\frac{1}{2} \times A E \times D N \\
& \operatorname{ar}(\triangle B D E)= \frac{1}{2} \times B D \times F \\
& \operatorname{ar}(\triangle C D E)= \frac{1}{2} \times E C \times D N \\
& \frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle B D E)}=\frac{1 / 2 \times A D \times E F}{1 / 2 \times B D \times E F}=\frac{A D}{B D}----(1) \\
& \frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(C D E)}=\frac{1 / 2 \times A E \times D N}{1 / 2 \times E C \times D N}=\frac{A E}{E C}----(2) \\
& \operatorname{But} \operatorname{ar}(\triangle B D E)=\operatorname{ar}(\Delta C D E)-------(3)
\end{aligned}
\end{aligned}
$$

as they are on the same base $D E$ and $D E \| B C$
from (1), (2) and (3) we get $\frac{A D}{D B}=\frac{A E}{E C}$
Corollary: In $\triangle A B C, D E \| B C$ then

$$
\frac{A D}{A B}=\frac{A E}{A C}
$$

Proof:- We know

$$
\begin{aligned}
& \frac{A D}{D B}=\frac{A E}{E C}-\cdots \\
& \therefore \frac{A D}{D B}+1=\frac{A E}{E C}+1 \\
& \frac{A D+D B}{D B}=\frac{A E+E C}{E C} \\
& \frac{A B}{D B}=\frac{A C}{E C}
\end{aligned}
$$

$$
\frac{D B}{A B}=\frac{E C}{A E}------(2)
$$

(Taking reciprocals)
Multiplying (1) and (2) we get

$$
\begin{aligned}
& \frac{A D}{D B} \times \frac{D B}{A B}=\frac{A E}{E C} \times \frac{E C}{A C} \\
& \frac{A D}{A B}=\frac{A E}{A C}
\end{aligned}
$$

Property - 1. If a line divides any two sides of a triangle in the same ratio, the line is parallel to the third side.

Example 1. In $(\triangle A B C, D E \| B C$ and $A D=2.4 \mathrm{~cm}, A E=3.2 \mathrm{~cm}, E C=4.8 \mathrm{~cm}$. Find AB .
Solution:-

$$
\begin{aligned}
& D E \| B C \text { (given) } \\
& \frac{A D}{D B}=\frac{A E}{E C} \text { (Thales Theoram) }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& \frac{2.4}{B D}=\frac{3.2}{4.8} \\
& \begin{aligned}
\therefore B D & =\frac{2.4 \times 4.8}{3.2} \\
& =3.6 \mathrm{~cm}
\end{aligned} \\
&=3.6 \mathrm{~cm}
\end{aligned}
\end{aligned}
$$

$$
\mathrm{AB}=\mathrm{AD}+\mathrm{DB}
$$

$$
\begin{aligned}
& =2.4+3.6 \\
& =6.0 \mathrm{~cm}
\end{aligned}
$$

Example 2. In the given figure, $D E \| B C$ and
$A D=4 x-3, A E=8 x-7, B D=3 x-1, C E=5 x-3 ;$ Find x .

Solution:-

In $\triangle A B C, D E \| B C$ (given)
$\frac{A D}{D B}=\frac{A E}{E C}$
$\frac{4 x-3}{3 x-1}=\frac{8 x-7}{5 x-3}$
Or, $(4 \mathrm{x}-3)(5 \mathrm{x}-3)=(8 \mathrm{x}-7)(3 \mathrm{x}-1)$
Or, $20 x^{2}-12 x-15 x+9=24 x^{2}-8 x-21 x+7$
Or, $4 x^{2}-2 x-2=0$
Or, $2 x^{2}-x-1=0$
Or, $2 \mathrm{x}^{2}-2 \mathrm{x}+\mathrm{x}-1=0$
Or, $2 \mathrm{x}(\mathrm{x}-1)+1(\mathrm{x}-1)=0$
$(x-1)(2 x+1)=0$
$\mathrm{x}=1,-1 / 2$
But sides of a triangle cannot be negative
$x=1$

Example 3. ABCD is a trapezium such that $A B \| C D$. Its diagonals AC and BD intersest each other at o.
prove that $\frac{A O}{O C}=\frac{B O}{O D}$.
Solution:- Given $A B \| D C$ AC and BD intersectato
To Prove: $\frac{A O}{O C}=\frac{B O}{O D}$

Construction: OP || AB || CD is drawn
Proof:- In $\triangle A D C, O P \| C D$

$$
\frac{P A}{P D}=\frac{A O}{O C}
$$

In $\triangle D A B, O P \| A B$

$$
\therefore \frac{P A}{P D}=\frac{B O}{O D} \text { (Corollary of Thales theo.) }
$$

From (i) and (ii) we get
$\frac{A O}{O C}=\frac{B O}{O D}$
Example 4. Prove that any line parallel to parallel sides of a trapezium divides the non-parallel sides proportionally (i.e. in the same ratio)

Solution:-

Given:- PQRS is a trapezium in which PQ || SR || XY
To Prove:- $\frac{P X}{X S}=\frac{Q Y}{Y R}$

Construction:- PR is joined which intersects XY at A.
Proof:- In $\triangle P S R, X A \| S R$
$\therefore \frac{P X}{X S}=\frac{P A}{A R}------(1) \quad$ [Thales Theorem]
$\triangle P R Q, A Y \| P Q$
$\therefore \frac{R Y}{Y Q}=\frac{A R}{P A}$
$\frac{Q Y}{Y R}=\frac{P A}{A R}-----(2)$ (Taking reciprocals)

From (i) and (ii) we get

$$
\frac{P X}{X S}=\frac{Q Y}{Y R}
$$

Example 5. In the given figure $\mathrm{DE} \| \mathrm{AQ}$ and $\mathrm{DF} \| \mathrm{AR}$
Prove that EF \| QR

Solution:-

In $\triangle A P Q, D E \| A Q$

$$
\therefore \frac{P E}{E Q}=\frac{P D}{D A}-----(1)
$$

$\triangle A P R, D F \| A R$

$$
\therefore \frac{P D}{D A}=\frac{P F}{F R}-----(2)
$$

from (1) and (2) we get

$$
\begin{aligned}
& \frac{P E}{E Q}=\frac{P F}{F R} \\
& \therefore E F \| Q R
\end{aligned}
$$

Exercise - 12

1. In the given figure, $\mathrm{PQ} \| \mathrm{BC}, \mathrm{AP}=2.4 \mathrm{~cm}, \mathrm{AQ}=2 \mathrm{~cm}, \mathrm{QC}=3 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$. Find $A B$ and $P Q$.

2. The diagonals $A C$ and $B D$ of a quadrilatereal $A B C D$ intersect each other at O such that

$$
\frac{A O}{O C}=\frac{B O}{O D}
$$

prove that the quadrilateral ABCD is traperzium.
3. In $\triangle A B C, D E \| B C$ and $\frac{A D}{D B}=\frac{3}{5}$ if $\mathrm{AC}=4.8 \mathrm{~cm}$, find AE
4. In the given figurer, $P Q \| B C$ and $P R \| C D$,
prove that $\frac{A R}{A D}=\frac{A Q}{A B}$.

5. In $\triangle A B C, D E$ is parallel to base BC , with D on AB and E on AC . If $\frac{A D}{D B}=\frac{2}{3}$, find $\frac{B C}{D E}$.
6. In the given figure, $P Q \| A B$ and $P R \| A C$. prove that $Q R \| B C$.

7. If three or more parallel lines, are intersected by two transversals, prove that the intercepts made by them on the trans versals are proportional.
8. In the given figure, $\mathrm{DE} \| \mathrm{AC}$ and $\mathrm{DC} \| \mathrm{AP}$, prove that $\frac{B E}{E C}=\frac{B C}{C P}$.

9. In the given figure, $\angle A=\angle B$ and $\mathrm{DE} \| \mathrm{AB}$ prove that $\mathrm{AD}=\mathrm{BE}$.

10. In the given figure $A B \| C D$. If $O A=3 x-19, O B=x-4, O C=x-3$ and $O D=4 \mathrm{~cm}$, determine x .

Answers

(10). ($\mathrm{x}=11 \mathrm{~cm}$ or 8 cm)

Critieria for similarities of two triangles.

1. If in two triangles, the corresponding angles are equal, then their corresponading sides are proportional (i.e. in the same ratio) and hence the triangles are similar.

This property is referred to as the AAA similarily criterian
In the above property if only two angles are equal, then the third angle will be automatically equal

Hence AAA criteria is same as AA criteria.
2. If the coreponding sides of two trianlgles are proportional (i.e.in the same ratio), their corresponding angles are equal and hence the triabgles are similar.

This property is referredd to as SSS similarily criteria.
3. If one angles of a triangle is equal to one angle of the other and the sides including these angles are proportional, the triagngle are similar.

This proprerty is referred to as SAS critreria.

Example 6. P and Q are pointes on AB and AC respectively of $\triangle A B C$ If $\mathrm{AP}=1 \mathrm{~cm}, \mathrm{~PB}$ $=2 \mathrm{~cm}, \mathrm{AQ}=3 \mathrm{~cm}$ and $\mathrm{QC}=6 \mathrm{~cm}$. Show that $\mathrm{BC}=3 \mathrm{PQ}$.

Solution:-

Given:- $\triangle A B C$ in which P and Q are points on AB and AC such that $\mathrm{AP}=$ $1 \mathrm{~cm}, \mathrm{AQ}=3 \mathrm{~cm}, \mathrm{~PB}=2 \mathrm{~cm}, \mathrm{QC}=6 \mathrm{~cm}$.

To Prove:- $\mathrm{BC}=3 \mathrm{PQ}$
Proof:- $\quad \therefore \frac{A P}{P B}=\frac{1}{2}, \frac{A Q}{Q C}=\frac{3}{6}=\frac{1}{2}$

$$
\therefore \frac{A P}{P B}=\frac{A Q}{Q C}
$$

Hence PQ || BC

$$
\begin{aligned}
& \therefore \angle P=\angle B \text { and } \angle Q=\angle C \\
& \therefore \triangle A P Q \sim \triangle A B C \quad \quad(A A-\text { Similarity) } \\
& \therefore \frac{A P}{A B}=\frac{P Q}{B C}=\frac{A Q}{A C}
\end{aligned}
$$

But $\mathrm{AB}=\mathrm{AP}+\mathrm{PB}=1+2=3 \mathrm{~cm}$

$$
\therefore \frac{P Q}{B C}=\frac{A F}{A B}=\frac{1}{3}
$$

Hence $\mathrm{BC}=3 \mathrm{PQ}$.

Example 7. In a $\triangle A B C, A B=A C$ and D is a point on side AC , such that $\mathrm{BC}^{2}=\mathrm{AC} \mathrm{X}$ CD

Prove that :- BD $=\mathrm{BC}$

Solution:-

Given:- $\triangle A B C$ in which $\mathrm{AB}=\mathrm{AC}$ and D is a point on AC

Such that $\mathrm{BC}^{2}=\mathrm{ACXCD}$
To Prove :- $\mathrm{BD}=\mathrm{BC}$
Proof:- $\mathrm{BC}^{2}=\mathrm{AC} \mathrm{X} \mathrm{CD}$
Or, $\mathrm{BC} \times \mathrm{BC}=\mathrm{ACXCD}$
Or, $\frac{B C}{C D}=\frac{A C}{B C}-\cdots---(1)$
In $\triangle^{5} A B C$ and $B C D$, we have
$\frac{B C}{C D}=\frac{A C}{B C} \quad[b y(1)]$
$\therefore \angle A C D=\angle D C B$ (common)
$\therefore A B C \sim \triangle B C D \quad[S A S$ criteria $]$
$\therefore \frac{B C}{C D}=\frac{A C}{B C}=\frac{A B}{B D}$
Or, $\frac{A C}{B C}=\frac{A B}{B D}$
Or, $\frac{A B}{B C}=\frac{A B}{B D} \quad[\because A B=A C]$
Or, $\frac{1}{B C}=\frac{1}{B D}$
$\therefore B D=B C$

Example 8. D is a point on the side BC of a $\triangle A B C$ such that $\angle A D C$ and $\angle B A C$ are equal.

Prove that $\mathrm{CA}^{2}=\mathrm{DC} \times \mathrm{CB}$

Solution:-

Given:- D is a point on the side BC of a $\triangle A B C$ such that $\angle A D C=\angle B A C$
To Prove:- $\mathrm{CA}^{2}=\mathrm{DC} \times \mathrm{CB}$
Proof:- In $\triangle^{3} A D C$ and DAC

$$
\begin{aligned}
& \angle B A C=\angle A D C \\
& \angle A C B=\angle D C A \\
& \therefore \triangle A C B \sim \triangle D C A \\
& \quad \text { (} \text { (} \text { given }) \\
& \therefore \triangle A \text { similarity) } \\
& \therefore \frac{B C}{A C}=\frac{A C}{D C} \\
& \Rightarrow A C^{2}=D C \times C B
\end{aligned}
$$

Exercise - 13

1. In the adjoing figure, $\angle A B D=\angle C D B=\angle P Q B=90^{\circ}$. If

$A B=x$ units $C D=y$ units and $P Q=Z$ units, Prove
that $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$,
2. In a $\triangle A B C, P$ and Q are point on the side AB and AC respectively such that PQ is parallel to $B C$. Prove that median $A D$ drawn from A to $B C$, bisect $P Q$.
3. Through the mid-point M of the side $C D$ of a parallelogram $A B C D$, the line $B M$ is drawn intersecting AC in L and AD produced in E . Prove that $\mathrm{EL}=2 \mathrm{BL}$.
4. $A B C$ is a triangle right anlgled at C. If P is the length of perpendicular from C to $A B$ and $\mathrm{AB}=\mathrm{c}, \mathrm{BC}=\mathrm{a}$ and $\mathrm{CA}=\mathrm{b}$, show that $\mathrm{pc}=\mathrm{ab}$
5. Two right angles ABC and DBC are drawn on the same hypoeuuge BC and on the same side of BC . If AC and BD interscta at P , prove that AP X PC = BP X PD
6. The perimeter of two smilar triangles ABC and PQR are respectively 32 cm and 24 cm .If $\mathrm{PQ}=12 \mathrm{~cm}$, find AB .
7. In a right triangles ABC , the perpendicular BD on the hypotenuse Ac is drown. Prove that $\mathrm{ACXCD}=\mathrm{BC}^{2}$
8. In $\triangle A B C, \angle A$ is aculte, BD and CE are perenducular on AC and AB respectively. Prove that AB X AE $=\mathrm{AC} \mathrm{X} \mathrm{AD}$
9. Through the vertex D of a parallotogram ABCD , a line is drawn to intersect the sides

AB and CB produced at E and F respectively prove that: $\frac{D A}{A E}=\frac{F B}{B E}=\frac{F C}{C D}$
10. Two sides and a mediam bisecting one of these sides of a triangle are respectively proportional to the two sides and the corresponding mediam of the other triangle. Prove that the triangles are similar.
11. If the angles of one triangles are respectively equal to the angles of another tranles. Prove that the ratio of their corresponding sides is the same as the ratio of their corresponding.

1. medians
2. altitudes
3. angle bisectors
4. E is a point on side AD produced of a parallelogram ABCD and BE intersects CD at F. prove that $\triangle A B E \sim \triangle C F B$.
5. If a perpecdicular is drawn from the vertex of the right angles of a right triangles to the hypoteuuse, the triangles on each side of the perpendicular are similar to the whole triangles and to each other.

Theorem 2. The ratio of the ares of two similar triangles is equal to the ratio of the squares of their corresponding sides.

$$
\text { Given:- } \triangle A B C \sim \triangle P Q R
$$

To prove:

$$
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A B^{2}}{P Q^{2}}=\frac{B C^{2}}{Q R^{2}}=\frac{C A^{2}}{R P^{2}}
$$

Construction: $A D \perp B C$ and $P S \perp Q R$ are drawn as in figure proof:-

$$
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{1 / 2 \times B C \times A D}{1 / 2 \times Q R \times P S} \quad\left[\text { area of } \Delta=\frac{1}{2} \times \text { base } \times \text { alt } .\right]
$$

Or,

$$
\begin{equation*}
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{B C}{Q R} \times \frac{A D}{P S} \tag{1}
\end{equation*}
$$

Now in $\triangle^{s} A D B$ and PSQ,

$$
\begin{array}{ll}
\angle B=\angle Q & {[\text { As } \triangle A B C \sim \triangle P Q R]} \\
\angle A D B=\angle P S Q & {\left[\text { Each } 90^{\circ}\right]} \\
\therefore \triangle A D B \sim \triangle P S Q & {[\text { AA similarly }]}
\end{array}
$$

$$
\begin{equation*}
\frac{A D}{P S}=\frac{A B}{P Q}- \tag{2}
\end{equation*}
$$

But $\quad \frac{A B}{P Q}=\frac{B C}{Q R} \quad[\sin c e \triangle A B C \sim \triangle P Q R]$

Hence,

$$
\begin{aligned}
& \frac{A D}{P S}=\frac{B C}{Q R} \quad[\text { from }(2)]------(3) \\
& \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{B C}{Q R} \times \frac{B C}{Q R} \quad[\text { from }(1) \&(3)] \\
& =\frac{B C^{2}}{Q R^{2}}------------(4) \\
& \text { Also } \frac{A B}{P Q}=\frac{B C}{Q R}=\frac{C A}{R P}-\cdots--(5)[a s, \triangle A B C \sim \triangle P Q R]
\end{aligned}
$$

$$
\frac{a r(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A B^{2}}{P Q^{2}}=\frac{B C^{2}}{Q R^{2}}=\frac{C A^{2}}{R P^{2}} \quad[\text { from }(4) \text { and }(5)]
$$

Example 9. ABC and DEF are two similar triangles such that $\mathrm{AB}=2 \mathrm{DE}$ and area of $\triangle A B C$ is $56 \mathrm{sq} . \mathrm{cm}$, find the area of $\triangle D E F$.

Solution:-

Given:- $\operatorname{ar}(\triangle A B C)=56 \mathrm{sq} . \mathrm{cm}, A B=2 D E$
To find: Area of $\triangle D E F$.

$$
\begin{aligned}
& \text { Proof: } \triangle A B C \sim \triangle D E F \\
& \text { and } A B=2 D E \\
& \text { (given) } \\
& \text { (given) } \frac{A B^{2}}{D E^{2}}=\frac{\operatorname{ar}(\triangle A B C)}{a r(\triangle D E F)} \frac{(2 D E)^{2}}{D E 2}=\frac{56}{a r(\triangle D E F)} \\
& \text { Or, } \frac{4 D E^{2}}{D E^{2}}=\frac{56}{a r(\triangle D E F)} \\
& \text { Or, } 4 \times a r \Delta D E F=56 \\
& \text { Or, ar } \Delta D E F=\frac{56}{4}=14 s q . c m
\end{aligned}
$$

Example 10. $A B C$ is a triangle, $P Q$ is the line segruent intersecting $A B$ in P and $A C$ in Q such that $\mathrm{PQ} \| \mathrm{BC}$ and divides $\triangle A B C$, into two parts equal in area. Find $\mathrm{BP}: \mathrm{AB}$

Solution:

Given: $\triangle A B C$, in which $P Q \| B C$, and $P Q$
divides $\triangle A B C$, into two parts equal in area.
To find: BP : AB

Proof:- In $\triangle^{s} A P Q$ and ABC

$\begin{array}{ll}\angle 1=\angle 1 & \text { [common] } \\ \angle 2=\angle 3 & {[P Q \| B C]}\end{array}$
$\therefore \triangle A P Q \sim \triangle A B C$
[AA corollary]

$$
\begin{array}{r}
\frac{\operatorname{ar}(\triangle A P Q)}{\operatorname{ar}(\triangle A B C)}=\frac{A P^{2}}{A B^{2}} \\
O r, \frac{\operatorname{ar}(\triangle A P Q)}{2 \operatorname{ar}(A P Q)}=\frac{A P^{2}}{A B^{2}}
\end{array}
$$

$$
\text { Or, } \quad \frac{1}{2} \quad=\frac{A P^{2}}{A B^{2}}
$$

$$
\therefore \frac{A P}{A B}=\frac{1}{\sqrt{2}}
$$

$$
\frac{A B-B P}{A B}=\frac{1}{\sqrt{2}}
$$

$$
\frac{A B}{A B}-\frac{B P}{A B}=\frac{1}{\sqrt{2}}
$$

$$
1-\frac{1}{\sqrt{2}}=\frac{B P}{A B}
$$

$$
\frac{\sqrt{2}-1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{B P}{A B}
$$

$$
\therefore \frac{B P}{A B}=\frac{2-\sqrt{2}}{2}
$$

Example 11. In the given figure, ABC and DBC are two triangles on the same base BC. IF AD intersects BC at O ,

Prove that $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(D B C)}=\frac{A O}{D O}$

Solution:

Given: ABC and DBC are two triangles on the same base BC . AD intersect BC at O .

To Prove: $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}$
Construction:- $A M \perp B C, D N \perp B C$ are drawn.
Proof:- In $\triangle^{s} A M O$ and $D N O$

$$
\begin{aligned}
& \angle A M O=\angle D N O \quad\left\lfloor\text { each } 90^{\circ}\right\rfloor \\
& \angle A O M=\angle D O N \quad[\text { vertically opposite angles }] \\
& \therefore \triangle A M O \sim \triangle D N O \quad \quad(A A \text { similarity }) \\
& \therefore \frac{A O}{D O}=\frac{A M}{D N}---\cdots---(1) \\
& \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{1 / 2 \times B C \times A M}{1 / 2 \times B C \times D N}=\frac{A M}{D N} \\
& =\frac{A O}{D O} \quad \quad[\text { form }(1)]
\end{aligned}
$$

Example 12. In the given fig ABC and PQR are isosceles triangles in which $\angle A=\angle P$.
lf $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{9}{16}$, find $\frac{A D}{P S}$

Solution:-

Given:- In $\triangle^{s} A B C$ and $\mathrm{PQR}, \angle A=\angle P \cdot A B=A C$ and $\mathrm{PQ}=\mathrm{PR}$

$$
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(P Q R)}=\frac{9}{16}
$$

To find: $\frac{A D}{P S}=$?
Proof:- $\triangle A B C$, is isosceles with $\mathrm{AB}=\mathrm{AC}$

$$
\begin{equation*}
\therefore \frac{A B}{A C}=1 . \tag{1}
\end{equation*}
$$

$\triangle P Q R$ is isosceles with $\mathrm{PQ}=\mathrm{PR}$

$$
\begin{equation*}
\therefore \frac{P Q}{P R}=1 . \tag{2}
\end{equation*}
$$

From (1) and (2) we get

$$
\frac{A B}{A C}=\frac{P Q}{P R}
$$

Or, $\frac{A B}{P Q}=\frac{A C}{P R}$
$\angle A=\angle P \quad$ (given)
$\therefore \triangle A B C \sim \triangle P Q R$
In $\triangle^{S} A D C$ and $P S R$
$\angle A C D=\angle P R S \quad(\therefore \triangle A B C \sim \triangle P Q R)$
$\angle A D C=\angle P S R \quad\left(=90^{\circ}\right)$
$\therefore \triangle A D C \sim \triangle P S R \quad$ (AA similarity)

$\frac{A D}{P S}=\frac{A C}{P R}$.
 $(\therefore \triangle A B C \sim \triangle P Q R)$
 But $\frac{B C}{Q R}=\frac{A C}{P R}$.

from (3) and (4)

$$
\begin{equation*}
\therefore \frac{A D}{P S}=\frac{B C}{Q R} \tag{5}
\end{equation*}
$$

We know $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{B C^{2}}{Q R^{2}}$

$$
\begin{aligned}
& \therefore \frac{9}{16}=\frac{A D^{2}}{P S} \\
& \text { Or, } \frac{A D}{P S}=\frac{3}{4}
\end{aligned}
$$

Exercise - 14

1. Prove that the area of the equilateral triangles describe on the side of a square is half the are of the equilateral triangle describe on its diagonals.
2. In the given figure $\triangle A B C \sim \triangle P Q R$. Also $\operatorname{ar}(\triangle A B C)=4 a r(\triangle P Q R)$. If $\mathrm{BC}=12 \mathrm{~cm}$, find QR.

3. $A B C$ is a triangle right angled at $A, A D$ is perpendicular to $B C$. IF $B C=13 \mathrm{~cm}$ and $A C$ $=5 \mathrm{~cm}$, find teh ratio of the areas of $\triangle A B C$ and $\triangle A D C$.
4. The area of two similar triagles are $121 \mathrm{~cm}^{2}$ and $64 \mathrm{~cm}^{2}$ respectively. If the median of the first triangle is 12.1 cm , find the correstponding median of the other.
5. In an equilateral triangle with side a, prove that the area of the triangles is $\frac{a^{2} \sqrt{3}}{4}$.
6. D and E are points on the sides $A B$ and $A c$ respectively of $\triangle A B C$ such that $D E$ is parallel to BC and $\mathrm{AD}: \mathrm{DB}=4: 5$. CD and BE intersect each other at F . Find the ratio of the areas of $\triangle D E F$ and $\triangle B C F$.

Answers

(2) 6 cm
(3) $169: 25$
(4) 8.8 cm
(6) $16: 81$

Pythagoras Theorem. (B audhayan Theorem)
Theorem 8.3: - In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Given: - $\angle B$ is a right angle of $\triangle A B C$
To Prove:- $A C^{2}=A B^{2}+B C^{2}$
Construction:- $B D \perp A C$ is drawn
Proof:- In $\triangle^{s} A D B$ and $A B C$
$\angle A D B=\angle A B C \quad\left(=90^{\circ}\right)$
$\angle B A D=\angle B A C \quad$ (Common)
$\therefore \triangle A D B \sim \triangle A B C \quad(A A-C o r)$
$\therefore \frac{A D}{A B}=\frac{A B}{A C}$
Or, $\mathrm{AB}^{2}=\mathrm{AC} \mathrm{X} \mathrm{AD}$
Similarly $\triangle A D C \sim \triangle A B C$

$$
\begin{equation*}
\therefore \frac{C D}{B C}=\frac{B C}{A C} \tag{ii}
\end{equation*}
$$

Or, $\mathrm{BC}^{2}=\mathrm{ACXCD}$
Adding (i) and (ii) we get
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{ACXAD}+\mathrm{ACXCD}$
$=\mathrm{ACX}(\mathrm{AD}+\mathrm{CD})$

$$
\begin{aligned}
& =\mathrm{AC} \mathrm{X} \mathrm{AC} \\
& =\mathrm{AC}^{2} \\
& \text { Or, } \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}
\end{aligned}
$$

Theorem 8.4 (Converse of Pythagoras Theorem): - In a triangle, if the square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle.

Given:- In $\triangle A B C, A B^{2}+B C^{2}=A C^{2}$
To prove:- $\angle A B C=90^{\circ}$
Construction:- A triangle PQR is constructed such that $\mathrm{PQ}=\mathrm{AB}, \mathrm{QR}=\mathrm{BC}$
and $\angle P Q R=90^{\circ}$
Proof:- In $\triangle P Q R, \angle Q=90^{\circ}$
$\therefore P R^{2}=P Q^{2}+Q R^{2} \quad$ [Pythagoras Theorem]
Or, $\mathrm{PR}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}----------$ (i) $[\mathrm{PQ}=\mathrm{AB}, \mathrm{QR}=\mathrm{BC}]$
But $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}---------$ (ii) (given)

$$
\therefore P R^{2}=A C^{2} \quad[\text { from (i) and (ii) }]
$$

Or, $\mathrm{PR}=\mathrm{AC}$
Or, Or, $\triangle A B C \cong \triangle P Q R \quad$ (SSS Congruency)

$$
\begin{equation*}
\therefore B=\angle Q=90^{\circ} \tag{CPCT}
\end{equation*}
$$

Hence $\angle A B C=90^{\circ}$
Example 13. Determine whether the triangle having sides $(2 a-1) \mathrm{cm},{ }^{2 \sqrt{2 a}} \mathrm{~cm}$ and (2a $+1) \mathrm{cm}$ is a right angled triangle.

Sol:- Let AB = $(2 \mathrm{a}-1) \mathrm{cm}$,

$$
\begin{aligned}
& B C=2 \sqrt{2 a} \mathrm{~cm} \\
& \mathrm{AC}=(2 \mathrm{a}+1) \mathrm{cm}
\end{aligned}
$$

$$
\begin{aligned}
& A B^{2}+B C^{2}=(2 a-1)^{2}+(2 \sqrt{2 a})^{2} \\
& =4 a^{2}-4 a+1+8 a \\
& =4 a^{2}=4 a+1 \\
& =(2 a+1)^{2} \\
& =A C^{2}
\end{aligned}
$$

$\therefore \triangle A B C$ is a right angled triangle.
Example 14. In an equilateral triangle $P Q R$, the side $Q R$ is trisected at S. prove that $9 P S^{2}=7 P Q^{2}$

Solution:-

Given:- In an equilateral $\triangle P Q R, Q R$ is trisected at S .
To Prove:- $9 P S^{2}=7 P Q^{2}$
Construction:- $P D \perp Q R$ is drawn
Proof:- $\mathrm{QD}=\mathrm{DR}=\mathrm{QR} / 2$
$[\perp$ Drawn on the base of an equilatera 1Δ bisect it]
Side QR is trisected at S (given)
$\left.\begin{array}{rl}\therefore Q S & =\frac{1}{3} Q R \\ S R & =\frac{2}{3} Q R\end{array}\right\}$-------(ii)
In $\triangle P S R, \angle R$ is acute

$$
\begin{aligned}
& \therefore P S^{2}=P R 2+S R 2-2 \quad R S R D \\
& P S^{2}=P R^{2}+\left(\frac{2}{3} Q R\right)^{2}-2 \cdot \frac{2}{3} Q R \times \frac{Q R}{2} \\
& P S^{2}=P R^{2}+\frac{4}{9} Q R^{2}-\frac{2}{3} Q R^{2} \\
& P S^{2}=P Q 2+\frac{4}{9} P Q^{2}-\frac{2}{3} P R^{2} \\
& P S^{2}=\frac{9 P Q^{2}+4 P Q^{2}-6 P Q^{2}}{9} \\
& 9 P S^{2}=7 P Q^{2}
\end{aligned}
$$

Example 15. In the given figure, $A B C$ is right angled triangle with the $A B=6 \mathrm{~cm}$ and $A C$ $=8 \mathrm{~cm}$. A circle with centre O has been inscribed inside the triangle. Calculate the value of r, the radius of the inscribed circle.

Solution:- In right $\triangle C A B$
$\mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}[\mathrm{By}$ Pathagoras theorem $]$
$=6^{2}+8^{2}$
$=36+64$
$=100$

$$
\begin{aligned}
& B C=\sqrt{100}=10 \mathrm{~cm} \\
& \begin{aligned}
S=\frac{6+8+10}{2} & =12 \mathrm{~cm} \\
\text { Area of } \triangle A B C & =\frac{1}{2} \times \text { base } \times \text { altitude } \\
& =1 / 2 \times 6 \times 8=24 \mathrm{~cm}^{2}
\end{aligned} \\
& \begin{aligned}
\therefore \text { radius, } r & =\frac{\text { Area of } \triangle A B C}{S} \\
& =24 / 12 \\
& =2 \mathrm{~cm}
\end{aligned}
\end{aligned}
$$

Example 16. ABC is a right triangle, right angled at C . If p is the length of the perpendicular from C to $A B$ and a, b, c have the usual meaning, then prove that

1. $\mathrm{pc}=\mathrm{ab}$
2.

$$
\text { Or, } \quad \frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}
$$

Solution:- (i) Area of $\triangle A B C$, taking BC as base $=1 / 2 \times$ BC X AC

$$
\begin{align*}
& = \\
& 1 / 2 \mathrm{ab} \tag{i}
\end{align*}
$$

Area of $\triangle A B C$, taking $A B$ as base $=1 / 2 \times \mathrm{AB} \mathrm{X} \mathrm{CD}$

$$
=1 / 2
$$

ср------(ii)

from (i) and (ii) $1 / 2 \mathrm{ab}=1 / 2 \mathrm{cp}$

$$
\mathrm{Or}, \mathrm{pc}=\mathrm{ab}
$$

(ii) In right $\triangle A B C$,

$$
\begin{aligned}
& C^{2}=a^{2}+b^{2} \\
& \left(\frac{a b}{p}\right)^{2}=a^{2}+b^{2} \\
& \frac{1}{p^{2}}=\frac{a^{2}+b^{2}}{a^{2} b^{2}}=\frac{a^{2}}{a^{2} b^{2}}+\frac{b^{2}}{a^{2} b^{2}} \\
& \text { Or, } \quad \frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}
\end{aligned}
$$

Exercise - 15

1. The perpendicular AD on the base BC of a $\triangle A B C$ intersects BC at D so that $\mathrm{DB}=$ $3 C D$. Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$.
2. P and Q are points on the side CA and CB respectively of a $\triangle A B C$ right angled at C .

Prove that $\mathrm{AQ}^{2}+\mathrm{BP}^{2}=\mathrm{AB}^{2}+\mathrm{PQ}^{2}$.
3. In $\triangle A B C$, if AD is the median, Show that $\mathrm{AB}^{2}+\mathrm{AC}^{2}=2\left(\mathrm{AD}^{2}+\mathrm{BD}^{2}\right)$
4. PQR is an isosceles right triangle, right angled at R . Prove that $\mathrm{PQ}^{2}=2 \mathrm{PR}^{2}$.
5. In a $\triangle A B C, \angle B$ is an acute angle and $A D \perp B C$. Prove that $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}-2 \mathrm{BC}$. BD.
6. In the adjoining figure, find the length of BD , If $A B \perp A C$ and $C D \perp A C$.
1.

7. Prove that the altitude of an equilateral triangle of side $2 a$ is $a \sqrt{3}$.
8. P and Q are the midpoint of the sides CA and CB respectively of $\triangle A B C$ right angled at
C. Prove that $4\left(A Q^{2}+B P^{2}\right)=5 A B^{2}$
9. In a triangle $\mathrm{ABC}, \mathrm{AD}$ is perpendicular on BC . Prove that $\mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$
10. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.
11. In adjoining figure, OD, OE and OF are respectively perpendiculars to the sides BC , CA and AB from any point O in the interior of the triangle Prove that
(i) $\mathrm{OA}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}-\mathrm{OD}^{2}-\mathrm{OE}^{2}-\mathrm{OF}^{2}=\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}$
(ii) $\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}=\mathrm{AE}^{2}+\mathrm{CD}^{2}+\mathrm{BF}^{2}$

12. O is any point in the insertor of a rectangle ABCD . Prove that interior $\mathrm{OB}^{2}+\mathrm{OD}^{2}=$ $\mathrm{OC}^{2}+\mathrm{OA}^{2}$

Answers

(6) 13 m

Internal Bisector of an angle of a Triangle

1. The internal bisector of an angle of a triangle divides the opposite side in the ratio of the sides containing the angle.
2. If a line-segment drawn from the vertex of a triangle to its opposite side and divides it in the ratio of the sides containing the angle, then the line segment bisect the angle of the vertex.

Example 17. In the adjoining fig AD is the bisector of $\angle A$. If $\mathrm{BD}=4 \mathrm{~cm}, \mathrm{DC}=3 \mathrm{~cm}$ and $A B=6 \mathrm{~cm}$, determine $A C$.

Solution:- In $\triangle A B C, A D$ is the bisector of $\angle A$.

$$
\begin{aligned}
\therefore \frac{A B}{A C} & =\frac{B D}{D C} \\
\therefore \frac{6}{A C} & =\frac{4}{3} \\
\therefore A C & =\frac{6 \times 3}{4} \\
& =4.5 \mathrm{~cm}
\end{aligned}
$$

Example 18. In the adjoining fig, AD is bisector of $\angle A$. If $\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{AC}=4 \mathrm{~cm}, \mathrm{DC}=$ 3 cm , find BC.

Solution:- In $\triangle A B C, A D$ is the bisector of $\angle A$.

$$
\begin{aligned}
& \therefore \frac{A B}{A C}=\frac{B D}{D C} \\
& \frac{5.6}{4}=\frac{B D}{3} \\
& \therefore B D=\frac{5.6 \times 3}{4}=4.2 \mathrm{~cm} \\
& \begin{aligned}
B C & =B D+D C \\
& =4.2+3 \mathrm{~cm} \\
& =7.2
\end{aligned}
\end{aligned}
$$

Exercise - 16

1. In $\triangle A B C$. the bisector of $\angle B$. intersects the side AC at D . A line parallel to side AC intersects line segment AB, DB and CB at points P, R and Q respectively. Prove that
2. $\mathrm{AB} \mathrm{X} \mathrm{CQ}=\mathrm{BC} \mathrm{X} \mathrm{AP}$
3. $\mathrm{PR} \times \mathrm{BQ}=\mathrm{QR} \times \mathrm{BP}$
4. ABCD is a quadrilateral in which $\mathrm{AB}=\mathrm{AD}$. The bisector of $\angle B A C$ and $\angle C A D$ intersects the side BC and CD respectively at E and F . Prove that the segment EF is parallel to the diagonal BD .
5. In $\triangle A B C, \angle B=2 \angle C$ and the bisector of $\angle B$. intersects AC at D . Prove that $\frac{B D}{D A}=\frac{B C}{B A}$
6. If the diagonal BD of a quadrilateral ABCD bisects both $\angle B$ and $\angle D$, show that $\frac{A B}{B C}=\frac{A D}{C D}$
7. D is the midpoint of side BC of $\triangle A B C$. DE and DF are respectively bisectors of $\angle B D A$ and $\angle C D A$ such that E and F lie on AB and AC , respectively. Prove that $\mathrm{EF}|\mid$ $B C$.
8. O is a point inside a $\triangle A B C$. The bisector of $\angle A O B, \angle B O C$ and $\angle C O A$ meet the sides AB, BC and CA in points D, E and F respectively. Prove that $\mathrm{AD} . \mathrm{BE} . \mathrm{CF}=\mathrm{DB} . \mathrm{EC} . \mathrm{FA}$
9. In the adjoining figure, $\angle B A C=90^{\circ}$, AD is bisector of $\angle B A C . D E \perp A C$, Prove that $\mathrm{DE} \mathrm{X}(\mathrm{AB}+\mathrm{AC})=\mathrm{AB} X \mathrm{AC}$.

10. If the bisector of an angle of a triangle bisect the opposite side, prove that the triangle is isosceles.
11. BO and CO are respectively the bisectors of $\angle B$ and $\angle C$ of $\triangle A B C$. AO is produced to meets BC at P . Show that
12. $\frac{A B}{B P}=\frac{A O}{O P}$
13. $\frac{A C}{C P}=\frac{A O}{O P}$
14. $\frac{A B}{A C}=\frac{B P}{C P}$
15. AP is the bisector of $\angle B A C$
