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Chapter 1
Matrices, Vectors, and Vector Calculus

In this chapter, we will focus on the mathematical tools required for the course.  The main
concepts that will be covered are:

• Coordinate transformations
• Matrix operations
• Scalars and vectors
• Vector calculus
• Differentiation and integration

Coordinate transformation
In order to be able to specify the position of a point P we first must specify the coordinate

system that will be used.  The coordinates of point P will be a function of the coordinate system
being used, and coordinate transformations allow us to define the relation between the
coordinates of point P in different coordinate systems.

Different types of coordinate systems are used for different applications.  The most
commonly used coordinate systems are:

• Cartesian coordinate systems.  These systems consist out of three perpendicular
coordinate axes, called the x, y, and z (or x1, x2, and x3) axes.  The coordinates of a point P
are usually specified by three coordinates (x, y, z) or (x1, x2, x3).  Note: the coordinate axes
in a Cartesian coordinate system are usually independent of time.

• Spherical coordinate systems.  Spherical coordinate systems are most often used when
the system under consideration has spherical symmetry.  The origin of the coordinate
system is chosen to coincide with the point of spherical symmetry.  The position of a
point P is determined by specifying the distance r from the origin of the coordinate
system and the polar and azimuthal angles θ and φ.  Note: we still need to define a
Cartesian coordinate system to define the origin and the two angles.  Note 2: the unit
vectors associated with the position vector and the angles will be a function of time if the
position described is time dependent.

• Cylindrical coordinate systems.  Cylindrical coordinate systems are most often used
when the system under consideration has cylindrical symmetry.  The coordinate system is
characterized by the axis of cylindrical symmetry, which is usually called the z axis.  The
position of a point P is determine by specifying the distance r to the z axis, the azimuthal
angle φ, and the z coordinate.  Note: we still need to define a Cartesian coordinate system
to define the origin and the two angles.  Note 2: the unit vectors associated with the
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position vector and the azimuthal angle will be a function of time if the position
described is time dependent.

A coordinate system is not uniquely defined.  For example, the coordinates of a point P in a
Cartesian coordinate system depend on the choice of coordinate axes.  Different choices will
result in different coordinates.  Coordinate transformations are used to transform the
coordinates between coordinate systems.

There are a number of different types of coordinate transformations we will encounter in this
course: translation, rotation, and the standard Lorentz transformation.  In this chapter we will
only focus on the rotational transformation.

Consider two coordinate systems, related to each other via a transformation around the x3

axis, as shown in Figure 1.

Figure 1.  Two different coordinate systems used to represent the position of P.

The relation between the coordinates of P in the two coordinate systems can be written as

xi ' = λij xi
j=1

3

∑

where

λij = cos xi ', x j( )
is the cosine of the angle between the xi’-axis and the xj-axis (also called the direction cosine).
The coordinate transformation is most often written in matrix notation:
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x ' =
λ11 λ12 λ13
λ21 λ22 λ23
λ31 λ32 λ33

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ x

Consider the two coordinate systems shown in Figure 1.  Since the two coordinate systems are
related to each other via a rotation around the x3-axis we conclude that:

• The direction cosine between the x3’-axis and the x1- and x2-axes will be zero (angle is
90°).  Thus: λ31 = λ32 = 0.

• The direction cosine between the x3’-axis and the x3-axis will be one (angle is 0°).  Thus
λ33 = 1.

• The direction cosine between the x1’- and x2’-axes and the x3-axis will be zero (angle is
90°).  Thus: λ13 = λ23 = 0.

• The direction cosines between the x1’- and the x2-axis is cos(π/2-θ) and the direction
cosine between the x2’- and the x1-axis is cos(π/2+θ). Thus: λ12 = cos(π/2-θ) and λ21 =
cos(π/2+θ).

• The direction cosines between the x1’- and the x1-axes and between the x2’- and the x2-
axes is cos(θ).  Thus: λ11 = λ22 = cos(θ).

The coordinate transformation for this particular transformation is thus given by

x ' =
cos θ( ) sin θ( ) 0
− sin θ( ) cos θ( ) 0
0 0 1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
x

Although each rotation matrix has 9 parameters, only 3 are truly independent.  This can be seen
by realizing that in order to specify a rotation we need to specify the rotation axis (which
requires the specification of a polar and azimuthal angle) and the rotation angle.  Consider some
of the relations we can determine between the parameters of the rotation matrix:

• The rotation preserves the length of a vector.  Rotating a unit vector will produce another
unit vector.  This requires that

λ11
2 + λ21

2 + λ31
2 = 1

λ12
2 + λ22

2 + λ32
2 = 1

λ13
2 + λ23

2 + λ33
2 = 1

• The rotation preserves the angle between two vectors.  Since the angle between the
coordinate axes is 90°, the angle between these axes after transformation must also be
90°.  This requires that
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λ11λ12 + λ21λ22 + λ31λ32 = 0

λ11λ13 + λ21λ23 + λ31λ33 = 0

λ12λ13 + λ22λ23 + λ32λ33 = 0

These six equations can be combined in the following manner

λijλkj
j
∑ = δ ik

This equation is called the orthogonal condition, and is only satisfied if the coordinate axes are
mutually perpendicular.

Matrix operations
When we are use the rotation matrix to carry out coordinate transformations we carry out a

matrix operation.  There are several important facts to remember about matrix operations:
• The unit matrix is defined as a matrix for which the diagonal values are 1 and the non-

diagonal values are 0.  When the unit vector operates on a vector, the result is the same
vector.

• The inverse of a matrix is defined such that when it operates on the original matrix, the
result is the unit matrix.

• A transposed matrix is derived from the original matrix by interchanging the rows and
columns.

• When we combine coordinate transformations, we can obtain the resulting transformation
by multiplying the rotation matrices.

• When we multiply rotation matrices we must realize that the order of the multiplication
matters.  See for example Figure 2.

Figure 2.  The order of transformation matters.
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• A matrix inversion is a transformation that results in the reflection through the origin of
all axes.  We can not find any series of rotations that result in an inversion.  Matrix
inversions are examples of the so-called improper rotations, and are characterized by a
matrix with a determinant equal to -1.  Proper rotations are those rotations that are
characterized by a matrix with a determinant equal to +1.

Vectors and Scalars
Consider the following coordinate transformation

xi ' = λij xi
j=1

3

∑

where

λijλkj
j=1

3

∑ = δ ik

Vectors and scalars are defined based on what happens as a result of such coordinate
transformations:

• If a quantity is unaffected by this transformation, it is called a scalar.
• If a set of three quantities transforms in the same manner as the coordinates of a point P,

these quantities are the components of what we call a vector.

Note:
• These definitions define scalars and vectors in a very different way from what you may

have been used to.  For example, the current definition of a vector makes no reference to
the geometrical interpretation the vector.

• You will encounter parameters in Physics that look like vectors, but do not transform like
vectors under certain operations (a pseudo vector is an example).  Just having a
magnitude and a direction is not sufficient to define a vector!

Vector and scalar addition and multiplication have a number of properties in common:
• Both satisfy the commutative law: the order of addition does not change the final result.
• Both satisfy the associative law: when we determine the sum of more than two vectors or

scalars, the final results will not depend on which pair of vectors or scalars we add first.
• The product of a scalar with a scalar transforms like a scalar (and is thus a scalar).
• The product of a vector with a scalar transforms like a vector (and is thus a vector).
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The following operations are unique to vectors and do not have equivalents for scalars:
• Scalar product.  The scalar product between two vectors A and B is defined as

A • B = AiBi
i
∑

It can be shown that the scalar product as defined above, is equal to the product of the
magnitudes of the two vectors and the direction cosine between them:

A • B = AiBi
i
∑ = ABcos(A,B)

In order to show that the scalar product behaves like a scalar, we must thus show that the
scalar product between A and B is the same as the scalar product between A’ and B’.
The scalar product also satisfies the commutative and the distributive laws:

A • B = B • A

A • B +C( ) = A • B( ) + A •C( )

• Vector product.  The vector product between two vectors A and B is a third vector C,
defined as

C = A × B =
x̂1 x̂2 x̂3
A1 A2 A3
B1 B2 B3

In order to show that the vector product behaves like a vector, we must show that the
vector product transforms like a vector under a coordinate transformation.
The geometrical interpretation of the vector product is shown in Figure 3.  The magnitude
of the vector product is the area of the parallelogram defined by the vectors A and B and
it is directed in a direction perpendicular to the plane defined by the vectors A and B
(right-hand rule defines the direction).
There are many properties of the vector product.  Some of them are listed here (see the
text book for a more complete listing):

A × B = −B × A

A × B ×C( ) = A •C( )B − A • B( )C
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A • B ×C( ) = B • C × A( ) = C • A × B( )

Figure 3.  Properties of the vector product between the vectors A and B.

Differentiation and Integration
Two important operations on both scalars and vectors are differentiation and integration.

These operations are used to define important mechanical quantities (such as velocity and
acceleration), and a thorough understanding of operations involving differentiation and
integration is required in order to succeed in this course.

• Scalar Differentiation.  We can differentiate vectors and scalars with respect to a scalar
variable s.
o The result of the differentiation of a scalar with respect to another scalar variable will

be another scalar.  The result of the differentiation will be independent of the
coordinate system.

o The result of the differentiation of a vector function with respect to a scalar variable
will be another vector.  The resulting vector will be directed tangential to the curve
that represents the function.

• Scalar Differentiation in different coordinate systems.  An important scalar variable
used in differentiations is the time t.  Based on the position vector, we can obtain the
velocity and acceleration vectors by differentiating the position vectors once and twice,
respectively, with respect to time.  If the Cartesian coordinates are being used, the axes
are independent of time, and differentiation the position vector with respect to time is
equivalent to differentiating the individual components with respect to time:

 
v = r = dxi

dt
x̂i

i
∑
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a = v = r = d 2xi

dt 2
x̂i

i
∑

The situation is more complicated if we are using spherical or cylindrical coordinates.
Consider for example the motion of an object shown in Figure 4.

Figure 4.  Motion of an object described in terms of spherical coordinates.

When the object moves during a time dt from P(1) to P(2), the spherical unit vectors
change too, as shown in Figure 4:

dr̂ = r̂ t + dt( )− r̂ t( )

dθ̂ = θ̂ t + dt( )−θ̂ t( )

Based on the definition of the unit vectors in the spherical coordinate systems we can
conclude:

dr̂ = dθ( )θ̂
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dθ̂ = − dθ( ) r̂

By dividing each side by dt we obtain the following relations:

 
̂r = dr̂

dt
= dθ

dt
⎛
⎝⎜

⎞
⎠⎟ θ̂ = θθ̂

 

̂θ = dθ̂
dt

= − θ r̂

Using these relations we can calculate the velocity and acceleration:

 
v = d

dt
rr̂( ) = dr

dt
r̂ + r dθ

dt
θ̂ = rr̂ + r θθ̂

 
a = d

dt
rr̂ + r θθ̂( ) = r − r θ 2( ) r̂ + rθ + 2 r θ( )θ̂

Other relations for spherical and cylindrical coordinates can be found in the textbook.

• Vector Differential Operator.  A very important operator in this course will be the
gradient operator.  It operates on a scalar function and the result of the operation is a
vector.  Consider a scalar function φ that is a function of the Cartesian coordinates.  The
value of the scalar function at a point P in two different coordinate systems must be the
same:

φ ' x1 ', x2 ', x3 '( ) = φ x1, x2 , x3( )

The coordinates in the two different coordinate systems are connected to each other via a
rotation matrix:

xi ' = λij xi
j=1

3

∑

When we differentiate the scalar function we find the following relation:

∂φ '
∂xi '

= λij
∂φ
∂x jj=1

3

∑
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As we can see, the components of the differential of the scalar function transform like a
vector, and the components can thus be considered the components of a vector we call the
gradient of a scalar function:

grad = ∇ = x̂ j
∂
∂x jj=1

3

∑

Other important operators are defined in terms of the gradient operator:

gradφ = ∇φ = ∂φ
∂x j

x̂ j
j=1

3

∑

divA = ∇ • A =
∂Aj

∂x jj=1

3

∑

curlA = ∇× A = εijk
∂Ak
∂x j

x̂
i, j ,k
∑

∇2φ = ∂2φ
∂x j

2
j=1

3

∑

The gradient of a scalar function has the following properties:
o  The gradient of a scalar function at a point P  is directed normal to the lines or

surfaces for which the scalar function is constant.
o The gradient of a scalar function at a point P is directed in the direction of maximum

change in the scalar function.

• Integration.  The opposite of differentiation is integration.  Both scalar and vector
functions can be integrated, and we can encounter volume, surface, and line integration:
o  Volume integration of a vector.  When we integrate a vector over a volume, the

result is another vector with components obtained by volume integration of the
components of the original vector.

Adv
V
∫ =

A1dv
V
∫
A2dv

V
∫
A3dv

V
∫

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
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o Surface integration of a vector.  The surface integral of a vector function is given by
the integral of its component perpendicular to the surface.  When we integrate a
vector over a surface, the result is a scalar.

A • da
S
∫ = A • n̂( )da

S
∫

o Line integration of a vector.  The line integration of a vector is given by the integral
of the component of the vector along the path (does not need to be a straight line).

A • ds
Line
∫ = Aidxi

i
∑

Line
∫

Various theorems relate volume, surface, line integrals of vectors.  Some of the most
important theorems are:

o Gauss’s theorem for volume integrals:

A • da
S
∫ = ∇ • A( )dv

V
∫

Note: the surface integral of a vector function is replaced by the volume integral of a
scalar function.

o Stoke’s theorem for line integrals:

A • ds
Line
∫ = ∇× A( )• da

S
∫

Stoke’s theorem is most useful if it reducing a two-dimensional surface integral to a one-
dimensional line integral.
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