## Exercise 12.1

## Question 1:

A traffic signal board, indicating 'SCHOOL AHEAD', is an equilateral triangle with side ' $a$ '. Find the area of the signal board, using Heron's formula. If its perimeter is 180 cm , what will be the area of the signal board?

Answer:
Side of traffic signal board $=a$
Perimeter of traffic signal board $=3 \times a$
$2 s=3 a \Rightarrow s=\frac{3}{2} a$
By Heron's formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of given triangle $=\sqrt{\frac{3}{2} a\left(\frac{3}{2} a-a\right)\left(\frac{3}{2} a-a\right)\left(\frac{3}{2} a-a\right)}$

$$
\begin{align*}
& =\sqrt{\left(\frac{3}{2} a\right)\left(\frac{a}{2}\right)\left(\frac{a}{2}\right)\left(\frac{a}{2}\right)} \\
& =\frac{\sqrt{3}}{4} a^{2} \tag{1}
\end{align*}
$$

Perimeter of traffic signal board $=180 \mathrm{~cm}$
Side of traffic signal board $(a)=\left(\frac{180}{3}\right) \mathrm{cm}=60 \mathrm{~cm}$
Using equation (1), area of traffic signal board $=\frac{\sqrt{3}}{4}(60 \mathrm{~cm})^{2}$
$=\left(\frac{3600}{4} \sqrt{3}\right) \mathrm{cm}^{2}=900 \sqrt{3} \mathrm{~cm}^{2}$

## Question 2:

The triangular side walls of a flyover have been used for advertisements. The sides of the walls are $122 \mathrm{~m}, 22 \mathrm{~m}$, and 120 m (see the given figure). The advertisements
yield an earning of Rs 5000 per $\mathrm{m}^{2}$ per year. A company hired one of its walls for 3 months. How much rent did it pay?


Answer:
The sides of the triangle (i.e., $a, b, c$ ) are of $122 \mathrm{~m}, 22 \mathrm{~m}$, and 120 m respectively.
Perimeter of triangle $=(122+22+120) m$
$2 s=264 \mathrm{~m}$
$s=132 \mathrm{~m}$
By Heron's formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of given triangle $=[\sqrt{132(132-122)(132-22)(132-120)}] \mathrm{m}^{2}$

$$
=[\sqrt{132(10)(110)(12)}] \mathrm{m}^{2}=1320 \mathrm{~m}^{2}
$$

Rent of $1 \mathrm{~m}^{2}$ area per year $=$ Rs 5000
Rent of $1 \mathrm{~m}^{2}$ area per month $=$ Rs $\frac{5000}{12}$
Rent of $1320 \mathrm{~m}^{2}$ area for 3 months $=\operatorname{Rs}\left(\frac{5000}{12} \times 3 \times 1320\right)$
$=\operatorname{Rs}(5000 \times 330)=\operatorname{Rs} 1650000$
Therefore, the company had to pay Rs 1650000.

## Question 3:

The floor of a rectangular hall has a perimeter 250 m . If the cost of panting the four walls at the rate of Rs. 10 per $\mathrm{m}^{2}$ is Rs.15000, find the height of the hall.
[Hint: Area of the four walls = Lateral surface area.]
Answer:
Let length, breadth, and height of the rectangular hall be $/ \mathrm{m}, b \mathrm{~m}$, and $h \mathrm{~m}$ respectively.

Area of four walls $=2 l h+2 b h$
$=2(I+b) h$
Perimeter of the floor of hall $=2(I+b)$
$=250 \mathrm{~m}$
$\therefore$ Area of four walls $=2(I+b) h=250 h \mathrm{~m}^{2}$
Cost of painting per $\mathrm{m}^{2}$ area $=$ Rs 10
Cost of painting $250 h \mathrm{~m}^{2}$ area $=$ Rs $(250 h \times 10)=$ Rs $2500 h$
However, it is given that the cost of paining the walls is Rs 15000 .
$\therefore 15000=2500 h$
$h=6$
Therefore, the height of the hall is 6 m .

## Question 4:

Find the area of a triangle two sides of which are 18 cm and 10 cm and the perimeter is 42 cm .

Answer:
Let the third side of the triangle be $x$.
Perimeter of the given triangle $=42 \mathrm{~cm}$
$18 \mathrm{~cm}+10 \mathrm{~cm}+x=42$
$x=14 \mathrm{~cm}$
$s=\frac{\text { Perimeter }}{2}=\frac{42 \mathrm{~cm}}{2}=21 \mathrm{~cm}$
By Heron's formula,

Area of a triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of the given triangle $=(\sqrt{21(21-18)(21-10)(21-14)}) \mathrm{cm}^{2}$

$$
\begin{aligned}
& =(\sqrt{21(3)(11)(7)}) \mathrm{cm}^{2} \\
& =21 \sqrt{11} \mathrm{~cm}^{2}
\end{aligned}
$$

## Question 5:

Sides of a triangle are in the ratio of 12: 17: 25 and its perimeter is 540 cm . Find its area.

## Answer:

Let the common ratio between the sides of the given triangle be $x$.
Therefore, the side of the triangle will be $12 x, 17 x$, and $25 x$.
Perimeter of this triangle $=540 \mathrm{~cm}$
$12 x+17 x+25 x=540 \mathrm{~cm}$
$54 x=540 \mathrm{~cm}$
$x=10 \mathrm{~cm}$
Sides of the triangle will be $120 \mathrm{~cm}, 170 \mathrm{~cm}$, and 250 cm .
$s=\frac{\text { Perimeter of triangle }}{2}=\frac{540 \mathrm{~cm}}{2}=270 \mathrm{~cm}$
By Heron's formula,

$$
\begin{aligned}
\text { Area of triangle } & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =[\sqrt{270(270-120)(270-170)(270-250)}] \mathrm{cm}^{2} \\
& =[\sqrt{270 \times 150 \times 100 \times 20}] \mathrm{cm}^{2} \\
& =9000 \mathrm{~cm}^{2}
\end{aligned}
$$

Therefore, the area of this triangle is $9000 \mathrm{~cm}^{2}$.

## Question 6:

An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm . Find the area of the triangle.

Answer:
Let the third side of this triangle be $x$.
Perimeter of triangle $=30 \mathrm{~cm}$
$12 \mathrm{~cm}+12 \mathrm{~cm}+x=30 \mathrm{~cm}$
$x=6 \mathrm{~cm}$
$s=\frac{\text { Perimeter of triangle }}{2}=\frac{30 \mathrm{~cm}}{2}=15 \mathrm{~cm}$
By Heron's formula,

$$
\begin{aligned}
\text { Area of triangle } & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =[\sqrt{15(15-12)(15-12)(15-6)}] \mathrm{cm}^{2} \\
& =[\sqrt{15(3)(3)(9)}] \mathrm{cm}^{2} \\
& =9 \sqrt{15} \mathrm{~cm}^{2}
\end{aligned}
$$

## Exercise 12.2

## Question 1:

A park, in the shape of a quadrilateral $A B C D$, has $\angle C=90^{\circ}, A B=9 \mathrm{~m}, \mathrm{BC}=12 \mathrm{~m}$, $C D=5 \mathrm{~m}$ and $A D=8 \mathrm{~m}$. How much area does it occupy?
Answer:
Let us join BD.
In $\triangle \mathrm{BCD}$, applying Pythagoras theorem,
$B D^{2}=B C^{2}+C D^{2}$
$=(12)^{2}+(5)^{2}$
$=144+25$
$B D^{2}=169$
$B D=13 \mathrm{~m}$


Area of $\triangle \mathrm{BCD}=\frac{1}{2} \times \mathrm{BC} \times \mathrm{CD}=\left(\frac{1}{2} \times 12 \times 5\right) \mathrm{m}^{2}=30 \mathrm{~m}^{2}$
For $\triangle A B D$,
$s=\frac{\text { Perimeter }}{2}=\frac{(9+8+13) \mathrm{m}}{2}=15 \mathrm{~m}$
By Heron's formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of $\triangle A B D=[\sqrt{15(15-9)(15-8)(15-13)}] \mathrm{m}^{2}$

$$
\begin{aligned}
& =(\sqrt{15 \times 6 \times 7 \times 2}) \mathrm{m}^{2} \\
& =6 \sqrt{35} \mathrm{~m}^{2} \\
& =(6 \times 5.916) \mathrm{m}^{2} \\
& =35.496 \mathrm{~m}^{2}
\end{aligned}
$$

Area of the park $=$ Area of $\triangle A B D+$ Area of $\triangle B C D$
$=35.496+30 \mathrm{~m}^{2}=65.496 \mathrm{~m}^{2}=65.5 \mathrm{~m}^{2}$ (approximately)

## Question 2:

Find the area of a quadrilateral $A B C D$ in which $A B=3 \mathrm{~cm}, B C=4 \mathrm{~cm}, C D=4 \mathrm{~cm}$, $D A=5 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}$.

Answer:


For $\triangle A B C$,
$A C^{2}=A B^{2}+B C^{2}$
$(5)^{2}=(3)^{2}+(4)^{2}$
Therefore, $\triangle A B C$ is a right-angled triangle, right-angled at point $B$.
Area of $\triangle A B C=\frac{1}{2} \times A B \times B C=\frac{1}{2} \times 3 \times 4=6 \mathrm{~cm}^{2}$
For $\triangle A D C$,
Perimeter $=2 s=A C+C D+D A=(5+4+5) \mathrm{cm}=14 \mathrm{~cm}$
$s=7 \mathrm{~cm}$
By Heron's formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\text { Area of } \begin{aligned}
\triangle \mathrm{ADC} & =[\sqrt{7(7-5)(7-5)(7-4)}] \mathrm{cm}^{2} \\
& =(\sqrt{7 \times 2 \times 2 \times 3}) \mathrm{cm}^{2} \\
& =2 \sqrt{21} \mathrm{~cm}^{2} \\
& =(2 \times 4.583) \mathrm{cm}^{2} \\
& =9.166 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of $A B C D=$ Area of $\triangle A B C+$ Area of $\triangle A C D$
$=(6+9.166) \mathrm{cm}^{2}=15.166 \mathrm{~cm}^{2}=15.2 \mathrm{~cm}^{2}$ (approximately)

## Question 3:

Radha made a picture of an aeroplane with coloured papers as shown in the given figure. Find the total area of the paper used.


Answer:


## For triangle $I$

This triangle is an isosceles triangle.
Perimeter $=2 s=(5+5+1) \mathrm{cm}=11 \mathrm{~cm}$
$s=\frac{11 \mathrm{~cm}}{2}=5.5 \mathrm{~cm}$
Area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=[\sqrt{5.5(5.5-5)(5.5-5)(5.5-1)}] \mathrm{cm}^{2}$
$=[\sqrt{(5.5)(0.5)(0.5)(4.5)}] \mathrm{cm}^{2}$
$=0.75 \sqrt{11} \mathrm{~cm}^{2}$
$=(0.75 \times 3.317) \mathrm{cm}^{2}$
$=2.488 \mathrm{~cm}^{2}$ (approximately)

## For quadrilateral II

This quadrilateral is a rectangle.
Area $=I \times b=(6.5 \times 1) \mathrm{cm}^{2}=6.5 \mathrm{~cm}^{2}$

## For quadrilateral III

This quadrilateral is a trapezium.
Perpendicular height of parallelogram $=\left(\sqrt{1^{2}-(0.5)^{2}}\right) \mathrm{cm}$
$=\sqrt{0.75} \mathrm{~cm}=0.866 \mathrm{~cm}$

Area $=$ Area of parallelogram + Area of equilateral triangle

$$
=(0.866) 1+\frac{\sqrt{3}}{4}(1)^{2}=0.866+0.433=1.299 \mathrm{~cm}^{2}
$$



Area of triangle (IV) = Area of triangle in (V)

$$
=\left(\frac{1}{2} \times 1.5 \times 6\right) \mathrm{cm}^{2}=4.5 \mathrm{~cm}^{2}
$$

Total area of the paper used $=2.488+6.5+1.299+4.5 \times 2$
$=19.287 \mathrm{~cm}^{2}$

## Question 4:

A triangle and a parallelogram have the same base and the same area. If the sides of triangle are $26 \mathrm{~cm}, 28 \mathrm{~cm}$ and 30 cm , and the parallelogram stands on the base 28 cm , find the height of the parallelogram.
Answer:

## For triangle

Perimeter of triangle $=(26+28+30) \mathrm{cm}=84 \mathrm{~cm}$
$2 s=84 \mathrm{~cm}$
$s=42 \mathrm{~cm}$
By Heron's formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of triangle $=[\sqrt{42(42-26)(42-28)(42-30)}] \mathrm{cm}^{2}$

$$
=[\sqrt{42(16)(14)(12)}] \mathrm{cm}^{2}=336 \mathrm{~cm}^{2}
$$

Let the height of the parallelogram be $h$.
Area of parallelogram = Area of triangle
$h \times 28 \mathrm{~cm}=336 \mathrm{~cm}^{2}$
$h=12 \mathrm{~cm}$
Therefore, the height of the parallelogram is 12 cm .

## Question 5:

A rhombus shaped field has green grass for 18 cows to graze. If each side of the rhombus is 30 m and its longer diagonal is 48 m , how much area of grass field will each cow be getting?
Answer:


Let $A B C D$ be a rhombus-shaped field.
For $\triangle B C D$,
Semi-perimeter, $s=\frac{(48+30+30) \mathrm{cm}}{2}=54 \mathrm{~m}$
By Heron's formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Therefore, area of $\triangle \mathrm{BCD}=[\sqrt{54(54-48)(54-30)(54-30)}] \mathrm{m}^{2}$

$$
=\sqrt{54(6)(24)(24)}=3 \times 6 \times 24=432 \mathrm{~m}^{2}
$$

Area of field $=2 \times$ Area of $\triangle B C D$
$=(2 \times 432) \mathrm{m}^{2}=864 \mathrm{~m}^{2}$
Area for grazing for $1 \mathrm{cow}=\frac{864}{18}=48 \mathrm{~m}^{2}$
Each cow will get $48 \mathrm{~m}^{2}$ area of grass field.

## Question 6:

An umbrella is made by stitching 10 triangular pieces of cloth of two different colours (see the given figure), each piece measuring $20 \mathrm{~cm}, 50 \mathrm{~cm}$ and 50 cm . How much cloth of each colour is required for the umbrella?


## Answer:

For each triangular piece,
Semi-perimeter, $s=\frac{(20+50+50) \mathrm{cm}}{2}=60 \mathrm{~cm}$
By Heron's formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
\text { Area of each triangular piece } & =[\sqrt{60(60-50)(60-50)(60-20)}] \mathrm{cm}^{2} \\
& =[\sqrt{60(10)(10)(40)}] \mathrm{cm}^{2}=200 \sqrt{6} \mathrm{~cm}^{2}
\end{aligned}
$$

Since there are 5 triangular pieces made of two different coloured cloths,

Area of each cloth required $=(5 \times 200 \sqrt{6}) \mathrm{cm}^{2}$
$=1000 \sqrt{6} \mathrm{~cm}^{2}$

## Question 7:

A kite in the shape of a square with a diagonal 32 cm and an isosceles triangles of base 8 cm and sides 6 cm each is to be made of three different shades as shown in the given figure. How much paper of each shade has been used in it?


Answer:
We know that
Area of square $=\frac{1}{2}(\text { diagonal })^{2}$
Area of the given kite $=\frac{1}{2}(32 \mathrm{~cm})^{2}=512 \mathrm{~cm}^{2}$
Area of $1^{\text {st }}$ shade $=$ Area of $2^{\text {nd }}$ shade
$=\frac{512 \mathrm{~cm}^{2}}{2}=256 \mathrm{~cm}^{2}$
Therefore, the area of paper required in each shape is $256 \mathrm{~cm}^{2}$.

## For III ${ }^{\text {rd }}$ triangle

Semi-perimeter, $s=\frac{(6+6+8) \mathrm{cm}}{2}=10 \mathrm{~cm}$
By Heron's formula,

Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of III $^{\text {rd }}$ triangle $=\sqrt{10(10-6)(10-6)(10-8)}$
$=(\sqrt{10 \times 4 \times 4 \times 2}) \mathrm{cm}^{2}$
$=(4 \times 2 \sqrt{5}) \mathrm{cm}^{2}$
$=8 \sqrt{5} \mathrm{~cm}^{2}$
$=(8 \times 2.24) \mathrm{cm}^{2}$
$=17.92 \mathrm{~cm}^{2}$
Area of paper required for $\mathrm{III}^{\text {rd }}$ shade $=17.92 \mathrm{~cm}^{2}$

## Question 8:

A floral design on a floor is made up of 16 tiles which are triangular, the sides of the triangle being $9 \mathrm{~cm}, 28 \mathrm{~cm}$ and 35 cm (see the given figure). Find the cost of polishing the tiles at the rate of 50 p per $\mathrm{cm}^{2}$.


Answer:
It can be observed that
Semi-perimeter of each triangular-shaped tile, $s=\frac{(35+28+9) \mathrm{cm}}{2}=36 \mathrm{~cm}$
By Heron's formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$

Area of each tile $=[\sqrt{36(36-35)(36-28)(36-9)}] \mathrm{cm}^{2}$
$=[\sqrt{36 \times 1 \times 8 \times 27}] \mathrm{cm}^{2}$
$=36 \sqrt{6} \mathrm{~cm}^{2}$
$=(36 \times 2.45) \mathrm{cm}^{2}$
$=88.2 \mathrm{~cm}^{2}$
Area of 16 tiles $=(16 \times 88.2) \mathrm{cm}^{2}=1411.2 \mathrm{~cm}^{2}$
Cost of polishing per $\mathrm{cm}^{2}$ area $=50 \mathrm{p}$
Cost of polishing $1411.2 \mathrm{~cm}^{2}$ area $=$ Rs $(1411.2 \times 0.50)=$ Rs 705.60
Therefore, it will cost Rs 705.60 while polishing all the tiles.

## Question 9:

A field is in the shape of a trapezium whose parallel sides are 25 m and 10 m . The non-parallel sides are 14 m and 13 m . Find the area of the field.

Answer:


Draw a line $B E$ parallel to $A D$ and draw a perpendicular $B F$ on $C D$.
It can be observed that $A B E D$ is a parallelogram.
$B E=A D=13 \mathrm{~m}$
$E D=A B=10 \mathrm{~m}$
$E C=25-E D=15 m$
For $\triangle B E C$,
Semi-perimeter, $s=\frac{(13+14+15) \mathrm{m}}{2}=21 \mathrm{~m}$
By Heron's formula,

Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of $\triangle \mathrm{BEC}=[\sqrt{21(21-13)(21-14)(21-15)}] \mathrm{m}^{2}$
$=[\sqrt{21(8)(7)(6)}]_{\mathrm{m}^{2}=84 \mathrm{~m}^{2}}$
Area of $\triangle B E C=\frac{1}{2} \times C E \times B F$
$84 \mathrm{~cm}^{2}=\frac{1}{2} \times 15 \mathrm{~cm} \times \mathrm{BF}$
$\mathrm{BF}=\left(\frac{168}{15}\right) \mathrm{cm}=11.2 \mathrm{~cm}$
Area of $A B E D=B F \times D E=11.2 \times 10=112 \mathrm{~m}^{2}$
Area of the field $=84+112=196 \mathrm{~m}^{2}$

