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Chapter 10
Motion in a Non-Inertial Reference Frame

The laws of physics are only valid in inertial reference frames.  However, it is not always
easy to express the motion of interest in an inertial reference frame.  Consider for example the
motion of a book laying on top of a table.  In a reference frame that is fixed with respect to the
Earth, the motion is simple: if the book is at rest, it will remain at rest (here we assume that the
surface of the table is horizontal).  However, we do know that the earth frame is not an inertial
frame.  In order to describe the motion of the book in an inertial frame, we need to take into
account the rotation of the Earth around its axis, the rotation of the Earth around the sun, the
rotation of our solar system around the center of our galaxy, etc. etc.  The motion of the book
will all of a sudden be a lot more complicated!

For many experiments, the effect of the Earth not being an inertial reference frame is too
small to be observed.  Other effects, such as the tides, can only be explained if we take into
consideration the non-inertial nature of the reference frame of the Earth and apply the laws of
physics in n inertial frame.

Rotating Coordinate Systems
Consider the two coordinate systems shown in Figure 1.  The non-primed coordinates are the

coordinates in the rotating frame, and the primed coordinates are the coordinates in the fixed
coordinate system.

Figure 1.  Fixed (primed) and rotating (non-primed) coordinate systems.  The vector R specifies
the origin of the rotating coordinate system in the fixed coordinate system.

Consider the motion of a point P.  In the fixed coordinate system, the position of P is
specified by the position vector r' and in the rotating coordinate system, its position is specified
by the position vector r.  As can be seen from Figure 1, these two vectors are related:
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r ' = r + R

Consider what happens when the rotating coordinate system rotates by an infinitesimal angle dθ.
If point P is at rest in the rotating coordinate system, we will see the position of P in our fixed
coordinate system change:

dr( ) fixed = dθ × r

It the rotation occurs during a period dt, we can rewrite the previous equation as

dr
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

=
dθ
dt

× r =ω × r

To derive this relation we have assume that point P remains are test in the rotating coordinate
system.  If point P is moving with respect to the rotating coordinate system, we need to add this
contribution to the expression of the velocity of P in the fixed coordinate system:

dr
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

=
dr
dt

⎛
⎝⎜

⎞
⎠⎟ rotating

+ω × r

This relation is valid for any vector, not just the position vector.   If instead of the position vector
we use the angular velocity vector we find that

dω
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

=
dω
dt

⎛
⎝⎜

⎞
⎠⎟ rotating

+ω ×ω =
dω
dt

⎛
⎝⎜

⎞
⎠⎟ rotating

This relation shows that the angular acceleration is the same in both reference frames.
In order to determine the velocity of point P in the fixed coordinate frame in terms of the

velocity of point P in the rotating coordinate system, we have to go back to the correlation
between the position vectors shown in Figure 1.  By differentiating the vectors with respect to
time we obtain the following relation:

dr '
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

=
dR
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

+
dr
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

Using our expression for the velocity of P in the fixed coordinate system we find that

dr '
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

=
dR
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

+
dr
dt

⎛
⎝⎜

⎞
⎠⎟ rotating

+ω × r
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This equation can also be rewritten as

vf =
dr '
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

=
dR
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

+
dr
dt

⎛
⎝⎜

⎞
⎠⎟ rotating

+ω × r = V + vr +ω × r

where

vf =
dr '
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

= velocit y of P in fixed frame

V =
dR
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

=  linear velocity of the origin of the rotating frame

vr =
dr
dt

⎛
⎝⎜

⎞
⎠⎟ rotating

= velocit y of P in rotating frame

ω × r =  velocity of P due to the rotation of the axes

"Newton's Law" in Rotating Reference Frames
Consider the situation in which an external force F  is acting on P .  Only on the fixed

reference frame can we used Newton's second law to determine the corresponding acceleration
of P:

af =
dvf
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

=
F
m

Another expression for the acceleration of P can be obtained by differentiating the velocity-
relation obtained in the previous section with respect to time:

 

af =
dvf
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

= dV
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

+
dvr
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

+ dω
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

× r +ω × dr
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

=

= dV
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

+
dvr
dt

⎛
⎝⎜

⎞
⎠⎟ rotating

+ω × vr
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+ dω

dt
⎛
⎝⎜

⎞
⎠⎟ fixed

× r +ω × dr
dt

⎛
⎝⎜

⎞
⎠⎟ rotating

+ω × r
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

= dV
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

+
dvr
dt

⎛
⎝⎜

⎞
⎠⎟ rotating

+ 2ω × vr + ω × r +ω × ω × r{ }

http://jsuniltutorial.weebly.com/

JS
UNIL

 T
UTO

RIA
L



Physics 235 Chapter 10

-  4  -

An observer in the rotating reference frame will observe an acceleration

ar =
dv
dt

⎛
⎝⎜

⎞
⎠⎟ rotating

This acceleration is certainly not equal to F/m, but the previous relations can be used to express
the acceleration in the rotating reference frame in terms of the acceleration in the fixed reference
frame:

 
ar = af −

dV
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

− 2ω × vr − ω × r −ω × ω × r{ }

This relation immediately shows what has been repeated already many times: the acceleration of
an object at P will be the same in two reference frames, only if one frame does not rotate with
respect to the other frame (that is ω = 0 rad/s and dω/dt = 0 rad/s2) and if the frames do not
accelerate with respect to the other frame.

In order to explore the implication of the relation between the acceleration of P in the
rotating and in the fixed coordinate frames, we assume for the moment that the origin of the
rotating reference frame is not accelerating with respect to the origin of the fixed reference frame
(dV/dt = 0), and that the axis of the rotating reference frame are rotating with a constant angular
velocity (dω/dt = 0 rad/s2).  Under these assumptions, we find that the acceleration of P in the
rotating reference frame is equal to

ar = af − 2ω × vr −ω × ω × r{ }

The second and the third terms on the right-hand side are non-inertial terms that are introduced to
correct the real force F in order to be able to use Newton-like laws in the rotating frame:

Feff = maf − 2mω × vr − mω × ω × r{ }

Using this effective force, an observer in the rotating frame will be able to determine the
acceleration in the rotating frame by dividing this effective force by the mass of the object.

The second term on the right-hand side of the expression of the effective force is called the
Coriolis force, and the last term on the right-hand side is called the centripetal force.  Both of
these forces are however not real forces; they are introduced in order to be able to use an
equation similar to Newton's second law in non-inertial reference frames.  When we try to
describe an object on the surface of the earth, we need to take the effects of these artificial forces
into consideration.  In the next two sections we will focus on these two forces in some detail.
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The Centripetal Force
The surface of the earth is a non-inertial reference frame.  The biggest deviation from good

"inertial" behavior is due to the rotation of the earth around its axis.  In the current discussion we
will thus ignore the motion of the earth around the sun, the motion of the solar system in our in
our galaxy, etc. etc.

Consider a pendulum at rest in our rotating reference frame, which is at rest with respect to
the surface of the earth.  Since the pendulum is at rest in this rotating reference frame, its velocity
vr in this frame is zero.  The effective force seen by the pendulum is thus equal to

Feff = maf − mω × ω × r{ } = m g0 −ω × ω × r{ }{ }

The direction of g0 in this equation is directly towards the center of the earth, while the direction
of the non-inertial correction term is radially outwards (see Figure 2).  If the angle between the
position vector r and the rotation axis is equal to q, we find the magnitude of the correction term
is equal to

ω × ω × r{ } =ω 2r sinθ

Figure 2.  Direction of the centripetal correction term.

The effect of this correction is that the equilibrium position of the pendulum (the position in
which the arm of the pendulum is parallel to the direction of the net force) is changed, and the
arm of the pendulum no longer points towards the center of the earth (see Figure 3).  The
direction of the gravitational acceleration, as measured by an observer in the rotating reference
frame, is thus equal to
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g = g0 −ω × ω × r{ }

The centripetal correction changes both the magnitude of the observed acceleration and its
direction.  The angle between the direction of g0 and the direction of g can be found easily (see
Figure 4):

Δθ = θ −α = θ − atan g0 sinθ −ω 2Rsinθ
g0 cosθ

⎛
⎝⎜

⎞
⎠⎟
= θ − atan 1− ω 2

g0

⎛
⎝⎜

⎞
⎠⎟
tanθ

⎛

⎝⎜
⎞

⎠⎟

Figure 3.  Effect of the centripetal term on a pendulum located on the surface of the earth.

Figure 4.  Direction of net gravitational acceleration.

The same result could have been obtained if we had solved this problem in a non-rotating
frame.  Consider a simple pendulum of mass m attached a string.  There are two forces acting on
this mass: the tension T in the string and the gravitational force Fg.  An observer in the inertial
frame will observe that mass m carries out circular motion, with a radius R sinθ, and know thus
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that there must be a net force acting on it, pointing towards the rotation axis.  This force must
have a magnitude of

Fr = m
v2

Rsinθ
= m

2πRsinθ
T

⎛
⎝⎜

⎞
⎠⎟
2

Rsinθ
= mω 2Rsinθ

This force must be generated by the component of the tension and the gravitational force in this
direction.  We must thus require that (see Figure 5):

mg0 sinθ −T sinα = mω 2Rsinθ

or

T sinα = mg0 sinθ − mω 2Rsinθ

Figure 5.  Pendulum in inertial frame.

The net force in the direction perpendicular to the plan of rotation must be zero, and we must
thus require that

T cosα = mgcosθ
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Combing these two equations we obtain the following relation between the angles:

tanα = T sinα
T cosα

=
mg0 sinθ − mω 2Rsinθ

mg0 cosθ
= tan 1− ω 2

g0

⎛
⎝⎜

⎞
⎠⎟
tanθ

⎛

⎝⎜
⎞

⎠⎟

which is the same results we obtained previously.

Coriolis Force
The Coriolis force is responsible for the deflection of objects moving in a rotating coordinate

system.  The force is proportional to the vector product of the angular velocity vector of the
rotating coordinate system (as measured by an observer in a fixed coordinate system) and the
velocity vector of the object in the rotating coordinate frame:

FCoriolis = −2m ω × vr( )

The effect of the Coriolis force on the motion of an object is illustrated in Figure 6.  Note that the
deflection depends on the z component of the angular velocity vector, which is perpendicular to
the surface of the earth.  The z component reaches a maximum value at the North pole, and is
zero at the equator.

Figure 6.  Deflection of a moving object as a result of the Coriolis force.

As a result of the Coriolis force, air flowing from West to East towards a region of low pressure
will be deflected to the South on the Northern hemisphere.  Air approaching the low from the
East will be deflected to the North.  On the Northern hemisphere we will thus expect that the air
is flowing counter clockwise around an area of low pressure; in the same manner we can show
that air flows clockwise around an area of high pressure.  A lot about the weather can be
understood on the basis of these observations.  See for example the forecast map shown Figure 7.
The position of the high pressure system over Michigan will bring cold air from Canada to
Rochester (since the circulation around the high is in the clockwise direction).  We thus expect
the winds to be from the North.  Once the high passes Rochester, the wind should come from the
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South, bringing us higher temperatures.  The low in the South of the USA will pull in moisture
from the gulf of Mexico and rain and thunder can be expected in the region in front of the low
(since this is the region where moisture of the golf of Mexico will go as a result of the counter-
clockwise flow around the low).

Figure 7.  Forty-eight hour forecast map for Wednesday November 3, 2004, at 1200 Z
(http://www.aopa.org/members/wx/focpage.cfm?sfcmap=0700d485).

Example: Problem 10.6
A bucket of water is set spinning about its symmetry axis.  Determine the shape of the water

in the bucket.

Consider a small mass m on the surface of the water.  From Eq. (10.25) in our text book we get

   Feff = F − m Rf − m ω × r − mω × ω × r( ) − 2mω × vr

In the rotating frame, the mass is at rest; thus
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  Feff = 0

The force F will consist of gravity and the force due to the pressure gradient, which is normal to
the surface in equilibrium.  Since

   
Rf = ω = vr = 0

we now have

  0 = mg + Fp − mω × ω × r( )

where Fp is due to the pressure gradient.

Since Feff = 0, the sum of the gravitational and centrifugal forces must also be normal to the
surface.  Thus θ′ = θ.

  
tan ′θ = tan θ = ω 2r

g

but

  
tan θ ' = dz

dr

Thus
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z = ω 2

2g
r2 + constant
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