

10th STATISTICS AND PROBABILITY

Statistics are the only tools by which an opening can be cut through the formidable thicket of difficulties that bars the path of those who pursue the Science of Man.

 The sum of deviations of a set of values x₁, x₂, x₃,.....x_n, measured from 50 is -10 and the sum of deviations of the values from 46 is 70. Find the value of n and the mean. (Ans:20,.49.5)

$$\sum_{i=1}^{n} (X_{i} - \overline{X}) = 0$$

Hence, $\sum_{i=1}^{n} (X_{i} - \overline{X}) = 0$

4.Compute the median from the following data

Mid value	115	125	135	145	155	165	175	185	195
Frequency	6	25	48	72	116	60	38	22	3
								(Ans	s:135.8)

Here, we are given the mid values. So, we should first find the upper and Ans: lower limits of the various classes. The difference between two consecutive values is h = 125 - 115 = 10 \therefore Lower limit of a class = Midvalue - h/2

Upper limit = Midvalue + h / 2

Cal	lculate of Median		
	Mid – value	Class Groups	Free
	115	110-120	6
	125	120-130	25

115	110-120	5	6
125	120-130	25	31
135	130 -1 40	48	79
145	140-150	72	151
155	150-160	116	267
165	160-170	60	327
175	170-180	38	365
185	180-190	22	387
195	190-200	3	390
			$N=\Sigma \ f_i=390$

uency

 \therefore N / 2 = 390 / 2 = 195

The cumulative frequency first greater than N i.e. 195 is 267 and the corresponding class is 150 - 160, so, 150 - 160 is the median class. L = 150, f = 116, h = 10, f = 151

Now,

We have,

Downloaded From: www.jsuniltutorial.weebly.com

Cumulative

frequency

Median =
$$L + \frac{\frac{n}{2} - f}{f} x h$$

Median = $150 + \frac{195 - 151}{116} x 10 = 153.8$

5. The mean of 'n' observation is x, if the first term is increased by 1, second by 2 and so on. What will be the new mean. (Ans: $\overline{x} + \frac{n+1}{n}$)

- 6. In a frequency distribution mode is 7.88 mean is 8.32 find the median. (Ans: 8.17)
- Ans: Mode = 3 median 2 mean 7.88 = 3 median - 2 x 8.32 7.88 +16.64 = 3 median $\frac{24.52}{3}$ = median \therefore median = 8.17

7. The mode of a distribution is 55 & the modal class is 45-60 and the frequency preceding the modal class is 5 and the frequency after the modal class is 10.Find the frequency of the modal class. (Ans:15)

Ans: mode = 55 Modal class = 45 - 60Modal class preceding $f_1 = 5$ After the modal class = $f_2 = 10$

Mode = L +
$$\frac{f - f_1}{2f - f_1 - f_2}$$
 x h
55 = 45 + $\frac{f - 5}{2f - 5 - 10}$ x 15

$$10 = \left(\frac{f-5}{2f-15}\right) \times 15$$
$$\frac{10}{15} = \frac{f-5}{2f-15}$$
$$20 \text{ f} - 150 = 15 \text{ f} - 75$$
$$5 \text{ f} = 75$$
$$f = \frac{75}{5} = 15$$

8. The mean of 30 numbers is 18, what will be the new mean, if each observation is increased by 2?

Ans: Let x_1 , x_2 , x_3 x_{30} be 30 number with then mean equal to 13 then

In the graphical representation of a frequency distribution if the distance between mode and mean is k times the distance between median and mean then find the value of k. (Ans:k=3)

Self Practice

10. Find the mean of 30 numbers given mean of ten of them is 12 and the mean of remaining 20 is 9. (Ans:10)

