JETNIL THTORIM ACBSE Coaching for QCathematics and Science

CBSE IX Congruence of Triangle Solved Questions

Q. Prove that Sum of Two Sides of a triangle is greater than twice the length of median drawn to third side. Given: $\triangle A B C$ in which $A D$ is a median.

To prove: $A B+A C>2 A D$.
Construction: Produce $A D$ to E, such that $A D=D E$. Join $E C$.
Proof: In $\triangle A D B$ and $\triangle E D C$,
$\mathrm{AD}=\mathrm{DE} \quad$ (Construction)
$B D=B D \quad(D$ is the mid point of $B C)$
$\angle A D B=\angle E D C \quad$ (Vertically opposite angles)
$\therefore \triangle \mathrm{ADB} \cong \triangle \mathrm{EDC}$ (SAS congruence criterion)
$\Rightarrow A B=E D \quad$ (CPCT)

In $\triangle A E C$,
$A C+E D>A E \quad$ (Sum of any two sides of a triangles is greater than the third side)
$\therefore A C+A B>2 A D \quad(A E=A D+D E=A D+A D=2 A D \& E D=A B)$
Q. $A B C$ is an isosceles triangle in which $A B=A C$. Side $B A$ is produced to D such that $A D=A B$ (see the given figure). Show that $\angle B C D$ is a right angle.

In $\triangle A B C$,
$A B=A C$ (Given)
$\Rightarrow \angle \mathrm{ACB}=\angle \mathrm{ABC}$ (Angles opposite to equal sides of a triangle are also equal)
In $\triangle A C D, \quad A C=A D$
$\Rightarrow \angle \mathrm{ADC}=\angle \mathrm{ACD}$ (Angles opposite to equal sides of a triangle are also equal)
 In $\triangle B C D$,

$$
\begin{aligned}
& \angle A B C+\angle B C D+\angle A D C=180^{\circ}(\text { Angle sum property of a triangle }) \\
& \Rightarrow \angle A C B+\angle A C B+\angle A C D+\angle A C D=180^{\circ} \\
& \Rightarrow 2(\angle A C B+\angle A C D)=180^{\circ} \\
& \Rightarrow 2(\angle B C D)=180^{\circ} \\
& \Rightarrow \angle B C D=90^{\circ}
\end{aligned}
$$

 ACBSE Coaching for OCathematies and Science

Q. given: two triangles $A B C$ and $P Q R$ in which $A B=P Q, B C=Q R$, median $A M=$ median $P N$ prove that triangle $A B C$ is congruent to triangle $P Q R$.

In $\triangle \mathrm{ABM}$ and $\triangle \mathrm{PQN}$
$A B=P Q$
(Given)
$\mathrm{AM}=\mathrm{PN}$
(Given)
And $B M=Q N$ (As M and N are the midpoint of sides $B C$ and $Q R$ respectively and given $B C=Q R$)
(By SSS rule)
$\mathrm{SO}, \angle \mathrm{ABM}=\angle \mathrm{PQN}$
(by CPCT)
Now In $\triangle A B C$ and $\triangle P Q R$
$A B=P Q$
(Given)
$B C=Q R$
(Given)
And $\angle \mathrm{ABC}=\angle \mathrm{PQR}$
(As we proved)

$\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR} \quad($ By SAS rule $)$

(Hence proved)
Q. The vertex angle of an isosceles triangle is twice the sum of its base angles. Find the measure of all the angles.

Let $A B C$ be an isosceles Δ. Let the measure of each of the base angles $=x$
Let $\angle \mathrm{B}=\angle \mathrm{C}=x$

Now, vertex angle $=\angle A=2 x$
Now, $\angle A+\angle B+\angle C=180^{\circ} \quad$ [angle sum property]
$\Rightarrow 2 x+x+x=180^{\circ} \Rightarrow 4 x=180 \Rightarrow x=180 / 4=45^{\circ}$
So, measure of each of the base angles $=45^{\circ}$
Now, measure of the vertex angle $=90^{\circ}$
Q. Prove that the triangle formed by joining the midpoints of the sides of an equilateral triangle is also equilateral.

Let DEF be the midpoints of sides of a triangle $A B C$ (with D on $B C, E$ on $A B$ and F on $A C$).
Now, considering triangles AEF and ABC, angles
$E A F=B A C$ and $A E / A B=1 / 2$ and $A F / A C=1 / 2$.

ACBSE Coaching for OCathematics and Science

Hence, both triangles are similar by the SAS (Side - Angle - Side) criterion and correspondingly as $A E / A B=A F / A C=E F / B C$ (similar triangle properties), $E F=B C / 2$.

The cases $D F=A C / 2$ and $D E=A B / 2$ can be proved in the same way.
So, $A B=B C=A C$ (from the given data)
$2 \mathrm{DF}=2 \mathrm{EF}=2 \mathrm{DE}$

DE=EF=DF
So triangle DEF is also Equilateral Triangle
The triangle formed by joining the mid-points of the equilateral triangle is also an equilateral triangle
Q. In triangle PQR, PQ> PR. QS and RS are the bisectors of angle Q and angle R. Prove that SQ> SR

In $\triangle P Q R$, we have,
$\mathrm{PQ}>\mathrm{PR} \quad$ [given]
$\Rightarrow \angle \mathrm{PRQ}>\angle \mathrm{PQR} \quad$ [angle opposite to longer side of $\mathrm{a} \Delta$ is greater]

$\Rightarrow 12 \angle \mathrm{PRQ}>12 \angle \mathrm{PQR}$

Since, $S R$ bisects $\angle R$, then $\angle S R Q=1 / 2 \angle P R Q$
Since $S Q$ bisects $\angle P$, then $\angle S Q R=1 / 2 \angle P Q R$

Now, from (1), we have
$1 / 2 \angle \mathrm{PRQ}>1 / 2 \angle \mathrm{PQR}$
$\Rightarrow \angle S R Q>\angle$ SQR $\quad[u s i n g ~(2) ~ a n d ~(3)] ~$
Now, in $\triangle S Q R$, we have $\angle S R Q>\angle S Q R \quad$ [proved above]
$\Rightarrow S Q>S R \quad$ [side opposite to greater angle of a Δ is longer]
Q. In triangle $A B C$ (A at the top), D is any point on the side $B C$.

Prove that $A B+B C+C A 2 A D$
In triangle $A B D$,
$A B+B D>A D$ (Sum of two sides of a triangle is greater than the third
 side) ... (1)

In triangle ACD,

ACBSE Coaching for Ohathematics and Science

$A C+C D>A D$ (Sum of two sides of a triangle is greater than the third side) ...(2)
Adding eq. (1) and (2)
$A B+(B D+C D)+A C>A D+A D$
$A B+B C+A C>2 A D$
Q. In triangle $A B C$, if $A B$ is the greatest side, then prove that angle c is greater than 60 degrees

It is given that, $A B$ is the longest side of the $\triangle A B C$.
$A B>B C$ and $A B>A C$.Now, $A B>B C \Rightarrow \angle C>\angle A \quad$ (angle opposite to longer side is greater)

Also, $\mathrm{AB}>\mathrm{AC} \Rightarrow \angle \mathrm{C}>\angle \mathrm{B} \quad$ (angle opposite to longer side is greater)

adding (1) and (2) ,
we get $\angle \mathrm{C}+\angle \mathrm{C}>\angle \mathrm{A}+\angle \mathrm{B}$
$\Rightarrow 2 \angle \mathrm{C}>\angle \mathrm{A}+\angle \mathrm{B} \Rightarrow 2 \angle \mathrm{C}+\angle \mathrm{C}>\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C} \Rightarrow 3 \angle \mathrm{C}>180^{\circ} \Rightarrow \angle \mathrm{C}>60^{\circ}$
Q. $A B$ and $C D$ are respectively the smallest and longest sides of a quadrilateral $A B C D$ (see the given figure). Show that $\angle A>\angle C$ and $\angle B>\angle D$.

Let us join AC.
In $\triangle A B C$,
$A B<B C$ ($A B$ is the smallest side of quadrilateral $A B C D$)
$\therefore \angle 2<\angle 1$ (Angle opposite to the smaller side is smaller)
In $\triangle A D C$,
$A D<C D$ (CD is the largest side of quadrilateral ABCD)
$\therefore \angle 4<\angle 3$ (Angle opposite to the smaller side is smaller)
On adding equations (1) and (2), we obtain
$\angle 2+\angle 4<\angle 1+\angle 3$
$\Rightarrow \angle \mathrm{C}<\angle \mathrm{A}$
$\Rightarrow \angle A>\angle C$

JSHIL HITITM: ACBSE Coaching for Q(athematics and Science

Let us join BD.
In $\triangle A B D$,
$A B<A D(A B$ is the smallest side of quadrilateral $A B C D)$
$\therefore \angle 8<\angle 5$ (Angle opposite to the smaller side is smaller)
In $\triangle B D C$,
$B C<C D$ (CD is the largest side of quadrilateral $A B C D$)
$\therefore \angle 7<\angle 6$ (Angle opposite to the smaller side is smaller)
On adding equations (3) and (4), we obtain
$\angle 8+\angle 7<\angle 5+\angle 6$
$\Rightarrow \angle D<\angle B \quad \Rightarrow \angle B>\angle D$
Q. If S. is any point on the side $Q R$ of triangle $P Q R$, prove that $P Q+Q R+R P>2 P S$
In $\triangle P Q S$,
$P Q+Q S>P S \quad$ (i) $\ldots \ldots \ldots \ldots \ldots . .$. (Sum of two sides of a triangle is greater than the third side)

In $\triangle \mathrm{PSR}$,
PR + SR > PS \qquad (ii)... Sum of two sides of a triangle is greater than the
 third side)

Adding (i) and (ii), we get
$P Q+Q S+P R+S R>2 P S$
$P Q+Q R+P R>2 P S(Q S+S R=Q R)$ Hence proved.
Q. Prove that the difference of any two sides of a triangle is less than the third side.

Construction: Take a Point D on AB such that AD = AC and join CD
Prove that : $A B-A C<B C, A B-B C<A C$ and $B C-A C<A B$

Proof: $\ln \Delta$ ACD, Ext $<4><2$
but, $\mathrm{AD}=\mathrm{AC} \Rightarrow<1=<2$

JSTINIL

So , $<4><1$

Now, $\ln \Delta \mathrm{BCD}$, ext $<1><3$
Then from (i) and (ii)
$<4><3 \quad \Rightarrow \quad \mathrm{BC}>\mathrm{BD}$
But, $B D=A B-A D$ and $A D=A C \quad \Rightarrow B D=A B-A C$

So, $B C>A B-A C$
Q.Prove that Sum of any two sides of triangle is greater than third side . Solution:.

Construction: Extend BA to D Such that AD = AC
Proof : In $\triangle A C D, D A=C A$.
Therefore, $\angle A D C=\angle A C D$ [isosceles triangle have two equal angles]
$\angle A D C+<1>\angle A C D$

Thus, $\angle B C D>\angle B D C$ [by Euclid's fifth common notion.]
In $\triangle D C B$
$\angle B C D>\angle B D C$, So, $B D>B C$.

But $B D=B A+A D$, and $A D=A C$.
Thus, $B A+A C>B C$.

A similar argument shows that $A C+B C>B A$ and $B A+B C>A C$.

OR, Another way to prove

Draw a triangle, $\triangle \mathrm{ABC}$ and line perpendicular to $A C$ passing through vertex B.

Prove that $B A+B C>A C$
From the diagram, $A M$ is the shortest distance from vertex A to $B M$. and CM is the shortest distance from vertex C to BM .
i.e. $\mathrm{AM}<\mathrm{BA}$ and $\mathrm{CM}<\mathrm{BC}$

By adding these inequalities, we have

$A M+C M<B A+B C$
$=>A C<B A+B C(\because A M+C M=A C)$
$B A+B C>A C$ (Hence Proved)

JSHIL HITITR ACBSE Coaching for Ohathematics and Science

Q. if one acute angle in a right angled triangle is double the other then prove that the hypotenuse is double the shortest side

Given: In $\triangle A B C, \angle B=90^{\circ}$ and $\angle A C B=2 \angle C A B$
Prove that $A C=2 B C$

Construction: Produce CB to D such that $\mathrm{BC}=\mathrm{BD}$ Join to AD

Proof : in triangle ABD, and ABC
$\mathrm{BD}=\mathrm{BC} ; \mathrm{AB}=\mathrm{AB}$ and $\angle \mathrm{B}=\angle \mathrm{B}=90^{\circ}$

By SAS congruency, $\triangle \mathrm{ABD} \cong \triangle \mathrm{ABC}$
By CPCT, AD = AC
$<\mathrm{DAB}=\angle \mathrm{BAC}=\mathrm{X}^{0}$

So, $\angle \mathrm{DAC}=2 \mathrm{X}^{0} \Rightarrow \angle \mathrm{ACB}=\angle \mathrm{ACD}$

Now in $\triangle A D C,<D A C=\angle A C D=2 X^{0}$
So, $A D=D C$
$\Rightarrow A C=D C=2 B C$ Proved
Q. Prove that in a triangle the side opposite to the largest angle is the longest.

Solution:
Given, in $\triangle A B C,<A B C \ll A C B$

There is a triangle $A B C$, with angle $A B C>A C B$.
Assume line $A B=A C$

Then angle ABC = ACB, This is a contradiction
Assume line $A B>A C$
Then angle ABC < ACB, This also contradiction our hypothesis

So we are left with only one possibility , $\mathrm{AC}>\mathrm{AB}$, which must be true
Hence proved: $A B<A C$

ACBSE Coaching for Ohathematics and Science

Q. Prove that in a triangle the angle opposite to the longer side is the longest.

Solution:
Given, in $\triangle A B C, A C>A B$.

Construction: Take a point D on $A C$ such that $A B=A D$
Proof: Angle ADB > DCB
$<\mathrm{ADB}=<\mathrm{ABD}$

So < ABD > <DCB (or ACB)
$<\mathrm{ABC}><\mathrm{ABD}$, so $<\mathrm{ABC}><\mathrm{ACB}$
Q. In a $\triangle A B C, \angle B=2<C$. D is a point on $B X C$ such that $A D$ bisect $<B A C$ and $A B=C D$. Prove that $<B A C$ $=72$ degree

In $\triangle A B C$, we have
$\angle \mathrm{B}=2 \angle \mathrm{C}$ or, $\angle \mathrm{B}=2 y$, where $\angle \mathrm{C}=y$
$A D$ is the bisector of $\angle B A C$. So, let $\angle B A D=\angle C A D=x$
Let $B P$ be the bisector of $\angle A B C$. Join PD.
In $\triangle B P C$, we have
$\angle \mathrm{CBP}=\angle \mathrm{BCP}=y \Rightarrow \mathrm{BP}=\mathrm{PC}$
Now, in $\triangle A B P$ and $\triangle D C P$, we have
$\angle \mathrm{ABP}=\angle \mathrm{DCP}=y$

$\mathrm{AB}=\mathrm{DC}$ [Given]
and, $\mathrm{BP}=\mathrm{PC}$ [Using (1)]
So, by SAS congruence criterion, we have
$\Delta \mathrm{ABP} \cong \Delta \mathrm{DCP}$
$\angle B A P=<C P D$ and AP $=D P$
$\angle C D P=2 x$ then $\angle A D P=<D A P=x \quad[<A=2 x]$
In $\triangle A B D$, we have
$\angle \mathrm{ADC}=\angle \mathrm{ABD}+\mathrm{BAD} \Rightarrow x+2 x=2 y+x \Rightarrow x=y$

JSITII

In $\triangle A B C$, we have
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow 2 x+2 y+y=180^{\circ}$
$\Rightarrow 5 x=180^{\circ}$
$\Rightarrow x=36^{\circ}$
Hence, $\angle \mathrm{BAC}=2 x=72^{\circ}$

You may also use this way:

Let in $\triangle \mathrm{ABC}, \angle \mathrm{C}=x$
$\therefore \quad \angle \mathrm{B}=2 x$
$\therefore \quad \angle \mathrm{BAC}=180-3 x$
(i)
$\therefore \frac{1}{2} \angle \mathrm{BAC}=\frac{180-3 x}{2}$
$\therefore \quad \angle \mathrm{CAD}=\frac{180-3 x}{2} \quad[\because \mathrm{AD}$ bisects $\angle \mathrm{BAC}]$
In $\triangle \mathrm{ADC}$,

$$
\mathrm{AD}=\mathrm{DC}
$$

$\Rightarrow \angle \mathrm{ACD}=\angle \mathrm{CAD}$
$\therefore x=\frac{180-3 x}{2}$
$\therefore 2 x=180-3 x$
$\therefore 5 x=180$
$\Rightarrow x=36$
Substituting the value of x in (i), we get
$\angle \mathrm{BAC}=180-3 x$

$$
=180-3 \times 36
$$

$$
=180-108
$$

$\Rightarrow \angle \mathrm{BAC}=72^{\circ}$
Hence proved

