JSMIN THITIII: ACBSE Coaching for Oratitematis and Sclence

Class 10 Application of Trigonometry [Height and Distance] Solved Problems

Question 01: The angle of elevation of an areoplane from a point on the ground is 45°. After a flight of 15 seconds, the elevation changes to 30°. If the areoplane is flying at a constant height of 3000 meters, find the speed of the plane.

Solution: Let A and B be two positions of the plane and let O be the point of observation. Let OCD be the horizontal line.

Then $\angle A O C=45^{\circ}$ and $\angle B O D=30^{\circ}$
By question, $A C=B D=3000 \mathrm{~m}$
In rt $\triangle \mathrm{ACO}$,
$\tan 45^{\circ}=\mathrm{AC} / O C$
or $1=\mathrm{AC} / \mathrm{OC}$

$O C=A C=3000 m$ \qquad
In rt $\triangle \mathrm{BDO}, \operatorname{Tan} 30^{\circ}=\mathrm{BD} / \mathrm{OD}=$ or $1 / \sqrt{ } 3=3000 /(\mathrm{OC}+\mathrm{CD})$
or, $30003=3000+C D$ \qquad [By (i)]
or $C D=3000(\sqrt{3}-1)=3000 \times 0.732=2196$

Distance covered by the areoplane in 15 seconds $=A B=C D=2196 \mathrm{~m}$
Speed of the plane $=\frac{2196}{15} \times \frac{18}{5}==527.04 \mathrm{~km} / \mathrm{h}$
Questions 02: A around balloon of radius r subtends an angle α at the eye of the observer while the angle of elevation of its centre is β, prove that the height of the centre of the balloon is $r \sin \beta \operatorname{cosec}$ $\alpha / 2$

Solution: Let the height of centre of the balloon above the ground be h m .
Given, balloon subtends α angle at the observes eye. $\therefore \angle \mathrm{EAD}=\alpha$
In $\triangle \mathrm{ACE}$ and $\triangle \mathrm{ACD}$,
$\mathrm{AE}=\mathrm{AD}$ (Length of tangents drawn from an external point to the circle are equal)
$\mathrm{AC}=\mathrm{AC}($ Common $)$
$\mathrm{CE}=\mathrm{CD}$ (Radius of the circle)
$\therefore \triangle \mathrm{ACE} \cong \triangle \mathrm{ACD}(\mathrm{SSS}$ congruence criterion $)$

$\Rightarrow \angle \mathrm{EAC}=\angle \mathrm{DAC}(\mathrm{CPCT})=\frac{\alpha}{2}$

ACBSE Coaching for Olathematics and Science

In right $\triangle A C D, \quad \operatorname{Sin} \frac{\alpha}{2}=\frac{C D}{A C} \Rightarrow \operatorname{Sin} \frac{\alpha}{2}=\frac{r}{A C} \Rightarrow \operatorname{cosec} \frac{\alpha}{2}=\frac{A C}{r} \Rightarrow A C=r \operatorname{cosec} \frac{\alpha}{2}$ \qquad
In right $\triangle \mathrm{ACB}, \quad \operatorname{Sin} \beta=\frac{\mathrm{BC}}{A C} \Rightarrow \operatorname{Sin} \beta=\frac{\mathrm{h}}{A C}$
From (i) and (ii) $\quad \operatorname{Sin} \beta=\frac{\mathrm{h}}{\mathrm{r} \operatorname{cosec} \frac{\alpha}{2}} \Rightarrow \mathrm{~h}=\mathrm{r} \operatorname{Sin} \beta \operatorname{cosec} \frac{\alpha}{2}$
Thus, the height of the centre of the balloon is $\left(r \operatorname{Sin} \beta \operatorname{cosec} \frac{\alpha}{2}\right)$

Question 03: At the foot of a mountain the elevation of its summit is 45°. After ascending 1000 m towards the mountain up a slope of 30° inclination, the elevation is found to be 60°. Find the height of the mountain.[height $=500(1+\sqrt{ } 3) \mathrm{m}$.]

Solution:

Let point A be the position of summit of the mountain and B being its foot.
Let C be the original position of observer and D, the final position after ascending 1000 metres.
Let $D N$ and $D M$ be perpendiculars to $B C$ and $A B$ respectively.
Thus CD $=1000 \mathrm{~m}$
$\angle D C N=30^{\circ}$ and $\angle A D M=60^{\circ}$
$\angle \mathrm{ACB}=\angle \mathrm{CAB}=45^{\circ}$ and $\angle \mathrm{DAM}=30^{\circ}$
$\angle D C A=\angle D A C=15^{\circ} \quad A D=C D=1000 m$
In, $\triangle \mathrm{DCN}, \sin 30^{\circ}=\frac{D N}{D C} \Rightarrow \frac{1}{2}=\frac{D N}{1000} \Rightarrow \mathrm{DN}=500 \mathrm{~m}$
In, $\triangle \mathrm{ADM}, \sin 60^{\circ}=\frac{A M}{A D} \Rightarrow \frac{\sqrt{3}}{2}=\frac{A M}{1000} \Rightarrow \mathrm{AM}=500 \sqrt{ } 3 \mathrm{~m}$
Total height $=\mathrm{BM}+\mathrm{AM}=\mathrm{DN}+\mathrm{AM}=500+500 \sqrt{ } 3 \mathrm{~m}=500(1+\sqrt{ } 3)$

JSITIL THORIML

Question 04: A bird is sitting on the top of a tree, which is 80 m high. The angle of elevation of the bird, from a point on the ground is 45°. The bird flies away from the point of observation horizontally and remains at a constant height. After 2 seconds, the angle of elevation of the bird from the point of observation becomes 30°. Find the speed of flying of the bird.

Solution: . It is given that the angle of elevations of the bird in two positions P and Q from point A are 45° and 30° respectively.
$\therefore \angle \mathrm{PAB}=45^{\circ}, \angle \mathrm{QAB}=30^{\circ}$. It is also given that $\mathrm{PB}=80$ meters

In $\triangle \mathrm{ABP}$, Tan $45^{\circ}=\frac{B P}{A B} \Rightarrow 1=\frac{80}{A B} \Rightarrow \mathrm{AB}=80 \mathrm{~m}$
In $\triangle A C Q$ we have $\operatorname{Tan} 30^{\circ}=\frac{C Q}{A C} \Rightarrow \frac{1}{\sqrt{3}}=\frac{80}{A C} \Rightarrow$
$\mathrm{AC}=80 \sqrt{3} \mathrm{~m}$
$\therefore \mathrm{PQ}=\mathrm{BC}=\mathrm{AC}-\mathrm{AB}=\{80 \sqrt{3}-80\} \mathrm{m}=$
$80(\sqrt{3}-1) \mathrm{m}$

Thus the bird touch $80(\sqrt{3}-1) \mathrm{m}$ in 2 seconds
Hence speed of the bird $40(\sqrt{3}-1) \mathrm{m}$

Question 05: If the angle of elevation of the cloud from a point $\mathrm{h} \mathbf{m}$ above a lake is α and the angle of depression of its reflection in the lake is B, prove that the height of the cloud is
$H=\frac{h(\operatorname{Tan} \alpha+\operatorname{Tan} \beta)}{(\operatorname{Tan} \beta-\operatorname{Tan} \alpha)}$
Solution: Let $A B$ be the surface of the lake and let E be the point of observation. Let $A E=h m$ Let C be the position of the cloud and D be its reflection in the lake.
The angle of elevation of a cloud be α and the angle of depression of its reflection be β.
In, Δ CEF, $\operatorname{Tan} \alpha=\frac{H-h}{E F}$
$\ln \Delta \mathrm{DEF}, \operatorname{Tan} \beta=\frac{H+h}{E F}$
$\Rightarrow \mathrm{EF}=\frac{H-h}{\text { Tan } \alpha}$
$\Rightarrow \mathrm{EF}=\frac{H+h}{\operatorname{Tan} \beta}--$ (ii)
From (i) and (ii)
$\frac{H-h}{\operatorname{Tan} \alpha}=\frac{H+h}{\operatorname{Tan} \beta}$

$\Rightarrow H \operatorname{Tan} \beta-h \operatorname{Tan} \beta=H \operatorname{Tan} \alpha+h \operatorname{Tan} \alpha$
$\Rightarrow H \operatorname{Tan} \beta-H \operatorname{Tan} \alpha=h \operatorname{Tan} \alpha+h \operatorname{Tan} \beta$
$\Rightarrow H(\operatorname{Tan} \beta-\operatorname{Tan} \alpha)=h(\operatorname{Tan} \alpha+\operatorname{Tan} \beta)$
$H=\frac{h(\operatorname{Tan} \alpha+\operatorname{Tan} \beta)}{(\operatorname{Tan} \beta-\operatorname{Tan} \alpha)}$

JSMNIL rItroinil ACBSE Coaching for O(athematics and Science

Question 06: A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30°, which is approaching the foot of tower with a uniform speed Six minutes later, the angle of depression of the car is found to be 60°. Find the time taken by the car to reach the foot of the tower. [3 sec]

Solution: Let $A B$ be the vertical tower. Suppose D and C be the positions of the car when the angle of depression from the top of the tower is 30° and 60° respectively.

Time taken for the angle of depression to change from 30° to $45^{\circ}=6 \mathrm{sec}$
(Given) $\angle \mathrm{EAD}=\angle \mathrm{ADB}=30^{\circ}$ (Alternate angles)
$\angle E A C=\angle A C B=60^{\circ}$ (Alternate angles)
Suppose $A B=h m$ and $B C=x m$.
In $\triangle \mathrm{ADB}, \tan 30^{\circ}=\frac{A B}{B D} \Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{(D C+x)} \Rightarrow \sqrt{3} h=D C+x--(i)$
$\ln \triangle A C B, \tan 60^{\circ}=\frac{A B}{B C} \Rightarrow \sqrt{3}=\frac{h}{x} x \frac{\sqrt{3}}{\sqrt{3}}$
$\Rightarrow \sqrt{3} h=3 x$
From (i) and (ii) $D C+x=3 x \Rightarrow D C=2 x--$-(iii)
Speed = Distance/time = DC/6
Time taken to cover distance $B C=x=$ Dist $/$ speed $=\frac{\mathrm{x}}{\frac{\mathrm{DC}}{6}}=\frac{6 x}{D C}$
Using value from (iii) Time $=\frac{6 x}{2 x}=3 \mathrm{~m} / \mathrm{s}$

JSUNIL THLIBIIL ACBSE Coaching for O(athematics and Science

Question 07: The angle of elevation of a cloud from a point 60 m above a lake is 30° and the angle of depression of the reflection of the cloud in the lake is 60°. Find the height of the cloud from the surface of the lake.

Solution:

$$
\text { Let } A O=H C D=O B=60 m A^{\prime} B=A B=60+H
$$

In $\triangle \mathrm{AOD}$,
$\operatorname{Tan} 30^{\circ}=\frac{O A}{O D} \Rightarrow \frac{1}{\sqrt{3}}=\frac{H}{O D} \Rightarrow \mathrm{OD}=\mathrm{H} \sqrt{ } 3$
Now, In $\triangle A^{\prime} O D$,
$\operatorname{Tan} 60^{\circ}=\frac{O A}{O D} \Rightarrow \sqrt{ } 3=\frac{O A^{\prime}}{O D} \Rightarrow \sqrt{ } 3=\frac{120+H}{\mathrm{H} \sqrt{ } 3}$
$\Rightarrow 120+H=3 H \Rightarrow 2 H=120 \Rightarrow H=60 m$

Thus, height of the cloud above the lake $=A B+A^{\prime} B=60+60=120$ m

Question 08: The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary. Prove that the height of the tower is 6 m .

Solution: Let, The angles of elevation of the top of a tower A from two points P and Q at a distance of 4 m and 9 m from the base B of the tower and $\angle A P B=\alpha$ then $\angle A Q B=(90-\alpha)$
$\ln \triangle \mathrm{ABP}, \operatorname{Tan} \alpha=\frac{A B}{4}$
and $\ln \triangle \mathrm{AQB}, \operatorname{Tan}(90-\alpha)=\frac{A B}{9} \Rightarrow \cot \alpha=\frac{A B}{9}$
Now. $\tan \alpha \mathrm{x} \cot \alpha=\frac{A B}{9} x \frac{A B}{4} \Rightarrow 1=\frac{A B^{2}}{36} \Rightarrow A B^{2}=36 \Rightarrow A B=6 \mathrm{~m}$

Best of Luck
Question 09: From the top of a tower of height 50 m , the angles of depression of the top and bottom of a pole are 30° and 45° respectively. Find (i) how far the pole is from the bottom of a tower, (ii) the height of the pole. (Use $\sqrt{3}$ = 1.732) [CBSE T-II 2015]
in $\triangle A B D, \tan 45=\frac{A B}{B D} \Rightarrow 1=\frac{A B}{B D} \Rightarrow \mathrm{AB}=\mathrm{BD}=50 \mathrm{~m}$ in $\triangle A M C, \tan 30=\frac{A M}{M C} \Rightarrow \frac{1}{\sqrt{3}}=\frac{A M}{50} \Rightarrow \mathrm{AM}=\frac{50}{\sqrt{3}} \mathrm{~m}=28.87 \mathrm{~m}$.

Height of pole $=C D=B M$

$$
=A B-A M=50-28.87=21.13 \mathrm{~m}
$$

JSMIN THITIIIL ACBSE Coaching for Ohathematics and Science

Question 10: Two poles of equal heights are standing opposite to each other on either side of the road which is 80 m wide. From a point P between them on the road, the angle of elevation of the top of a pole is 60° and the angle of depression from the top of another pole at point P is 30°. Find the heights of the poles and the distances of the point P from the poles. [CBSE T-II 2015]

Solving (i) and (ii)

$$
y=20, \quad x=20 \sqrt{3} \mathrm{~m}
$$

Height of pole $=20 \sqrt{3} \mathrm{~m}$.

$$
\begin{align*}
& \mathrm{PR}=20 \mathrm{~m} . \\
& \mathrm{OP}=80-20=60 \mathrm{~m} .
\end{align*}
$$

Question 11 : The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 45°. if the tower is 30 m high, find the height of the building[CBSE T-II 2015]

Question 12 : From a point P on the ground the angle of elevation of the top of a tower is 30° and that of the top of a flag staff on the top of the tower, is 60°. if the length of flag staff is 5 m , find the height of the tower. [CBSE T-II 2015]

Jsuril

figure
1 m
Writing the trigonometric equations
(i) $\frac{x}{y}=\tan 30^{\circ}=\frac{1}{\sqrt{3}} \Rightarrow y=\sqrt{3} x$

1 m
(ii) $\frac{\mathrm{x}+5}{\mathrm{y}}=\tan 60^{\circ}=\sqrt{3}$ or $\frac{\mathrm{x}+5}{\sqrt{3} x}=\sqrt{3} \quad 11 / 2 \mathrm{~m}$

$$
\begin{array}{r}
\Rightarrow \quad 3 x=x+5 \\
\\
\text { or } x=2.5
\end{array}
$$

$\therefore \quad$ Height of Tower $=2.5 \mathrm{~m}$
Question 13: At a point $A, 20$ metres above the level of water in a lake, the angle of elevation of a cloud is 30°. The angle of depression of the reflection of the cloud in the lake, at A is 60°. Find the distance of the cloud from A.
correct figure

$$
\begin{aligned}
& \frac{h}{x}=\tan 30^{\circ}=\frac{1}{\sqrt{3}} \Rightarrow x=\sqrt{3} h . \\
& \frac{40+h}{x}=\tan 60^{\circ}=\sqrt{3} \Rightarrow x=\frac{40+\mathrm{h}}{\sqrt{3}} \\
& \therefore \quad \sqrt{3} \mathrm{~h}=\frac{40+\mathrm{b}}{\sqrt{3}} \Rightarrow \mathrm{~h}=20 \mathrm{~m} \\
& \therefore \quad \mathrm{x}=20 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

$$
\therefore \quad \mathrm{AC}=\sqrt{(20)^{2}+(20 \sqrt{3})^{2}}=40 \mathrm{~m}
$$

1 m
$1 / 2 \mathrm{~m}$
$1 / 2 \mathrm{~m}$
$1 / 2 \mathrm{~m}$
$1 / 2 \mathrm{~m}$

1 m

Question 14: An areoplane flying horizontal 1 km above the ground is observed at an elevation of 60°. After 10 seconds its elevation is observed to be 30°. Find the speed of the areoplane. [240 $\sqrt{3} \mathrm{~km} / \mathrm{h}$]

JSUIL THORIML ACBSE Coaching for OXathematics and Science

A is the point on the ground whereas C and D are position of the aeroplane.
In $\triangle C B A$, Tan $30=\frac{1000}{A B} \Rightarrow \frac{1}{\sqrt{3}}=\frac{1000}{A B}=A B=1000 \sqrt{3} \mathrm{~m}$
In $\triangle D E A$, Tan $60=\frac{1000}{A E} \Rightarrow \sqrt{ } 3=\frac{1000}{A E}=A E=\frac{1000}{\sqrt{3}} m$
$B E$ is the distance travelled by the plane in 10 sec
$B E=A B-A E=1000 \sqrt{3}-\frac{1000}{\sqrt{3}}=\frac{3000-1000}{\sqrt{3}}=\frac{2000 \sqrt{3}}{3}$
Speed of the areoplane $=$ Distance \div Time $=\frac{2000 \sqrt{3}}{3} \div 10 \frac{\mathrm{~m}}{\mathrm{~s}}=\frac{2000 \sqrt{3}}{30} \times \frac{18}{5} \mathrm{~km} / \mathrm{h}=240 \sqrt{3} \mathrm{~km} / \mathrm{h}$
Question 15: The angle of elevation of a jet fighter from point A on the ground is $\mathbf{6 0}$ degree .After 15 seconds the angle of elevation changes from 60 degree to $\mathbf{3 0}$ degree .If the jet is flying at a speed of $\mathbf{7 2 0} \mathbf{~ k m} / \mathrm{hr}$, find the height at which the jet fighter is flying.

Solution: Let P and Q be the two position of jet and the height of the jet be h metres.
Let $A B C$ be the horizontal line through A. It is given that A is the point of observation and angle of elevation of jet in two positions P and Q from point A are 60° and 30° respectively. $\therefore \angle P A B=60^{\circ}, \angle \mathrm{QAB}=30^{\circ}$

In $\triangle A B P$,
$\operatorname{Tan} 60^{\circ}=\frac{P B}{A E} \Rightarrow \sqrt{3}=\frac{h}{A B} \Rightarrow \mathrm{AB}=\frac{h}{\sqrt{3}}$
In $\triangle A C Q$,

$$
\operatorname{Tan} 30^{\circ}=\frac{Q C}{A C} \Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{A C} \Rightarrow \sqrt{3} h=A C
$$

$$
\text { Also speed of jet }=720 \mathrm{~km} / \mathrm{hr}=720 \times \frac{5}{18} \mathrm{~m} / \mathrm{s}=200 \mathrm{~m} / \mathrm{s}
$$

$$
P Q=200 \times 15=3000 \mathrm{~m} \Rightarrow \mathrm{BC}=\mathrm{PQ}=3000 \mathrm{~m}
$$

$$
\text { Then, } A C-A B=3000 \Rightarrow \sqrt{ } 3 h-\frac{h}{\sqrt{3}}
$$

$$
\Rightarrow h=1500 \downarrow \text { 准 } \mathrm{m}
$$

