1. In $\triangle A B C, A B=4 \mathrm{~cm}$ and $B C=5 \mathrm{~cm}$. Find the greatest angle.
2. In $\triangle A B C$, if $A D$ is the bisector of $<A$, show that $A B>B D$.
3. O is a point in the interior of $\triangle A B C$, prove $A B+A C>O B+O C 4$
4. $A D$ is a median to side $B C$ of $\triangle A B C$. Prove that $A B+A C>2 A D$.
5. Show that the difference between any two sides of a triangle is less than the third side.
6. In $\triangle A B C A P \perp Q R$ show $A R>A Q$
7. Line-segment $A B$ is parallel to another line-segment $C D . E$ is the mid-point of AD. Show that
(i) $\triangle A E B \cong \triangle D E C$
(ii) E is also the mid-point of BC . (See fig)

8. Angles opposite to equal sides of an isosceles triangle are equal. Prove.
9. In Fig. $\mathrm{PQ}=\mathrm{PS}, \mathrm{PR}=\mathrm{PT}$ and $\mathrm{oQPS}=\mathrm{oRPT}$. Show that $\mathrm{QR}=\mathrm{ST}$.
10. $\triangle A B C$ is an isosceles triangle in which $A B=A C$. Side $B A$ is produced to D such that $A D=A B$. Show that $\triangle B C D$ is a right angle.
11. Two triangles are congruent if two angles and the included side of one triangle are equal to two angles and the included side of other triangle.
12. In right triangle $A B C$, right angled at C, E is the mid-point of
 hypotenuse $A B$. C is joined to E and produced to a point D such that $D E=C E$. Point D is joined to point B (see fig).

Show that: (i) $\triangle A E C \cong \triangle B E D$
(ii) DBC is a right angle. (iii) $\triangle \mathrm{DBC} \cong \triangle A C B$ (iv) $C E=1 / 2 \mathrm{AB}$
(v) E is equidistant from A, B and C

