JSMINIL THITBII: ACBSE Coaching for D(athematics and Science

Class 9 chapter Sound CBSE Solved Test paper-1

Solved Numerical

1. A person observes the smoke from a gun 1.4 sec before he hears the bang. If the gun is 476 m away from the person, find the speed of sound?

Ans: the speed of sound $=\frac{476}{1.4}=340 \mathrm{~m} / \mathrm{s}$
2. A person standing near the cliff fires the gun and heard the echo after 1.5 sec . If the speed of sound in air is $340 \mathrm{~m} / \mathrm{sec}$, how far is person from the cliff?

Ans: $\mathrm{d}=\frac{v t}{2}=\frac{340 \times 1.5}{2}=255 \mathrm{~m}$
3. A sound wave of frequency 5000 Hz travel in air with speed of $350 \mathrm{~m} / \mathrm{sec}$. Calculate the wave length.

Ans: $\mathrm{v}=\mathrm{n} \lambda \Rightarrow \lambda=\frac{v}{n}=350 / 5000=0.07 \mathrm{~m}$
4. If you hear thunder 7 sec after you see he lightening, how far you from the lighting occurred?

Ans: $\mathrm{d}=\mathrm{s} \times \mathrm{t}=(340 \times 7)=2380 \mathrm{~m}$
5. A bat emits ultrasonic wave of frequency 30 Khz. .lf its speed is $350 \mathrm{~m} / \mathrm{s}$ and bats hear its echo after 0.6 sec after emitting the, find how far is bat from obstacle and wave length of wave?

Ans: $\mathrm{f}=30 \mathrm{Khz}=30000 \mathrm{hz}$
$\mathrm{d}=\frac{v t}{2}=\frac{350 \times 0.6}{2}=105 \mathrm{~m}$
$\lambda=\lambda=\frac{v}{f}=\frac{350}{30000}=0.01166666666=11.7 \times 10^{-3} \mathrm{~m}$
6. Meera is standing between two hills. She shouted loudly and hears first echo after 0.5 sec and second echo after 1 sec . what is distance between two hills?

Let the distance b / w nearest clif and meera $=\mathrm{x} \mathrm{m}$

Jsuril turamal ACBSE Coaching for O(athematics and Science

and the distance b / w distant clif and meera $=\mathrm{ym}$

Distance b / w two clif $=(\mathrm{x}+\mathrm{y}) \mathrm{m}$

Total distance covered by sound to produce first echo $=2 \times \mathrm{m}$ and time $=0.5 \mathrm{sec}$
$\Rightarrow 2 y=340 \times 0.5 \Rightarrow x=\frac{340 \times 0.5}{2}=85 \mathrm{~m}$
Total distance covered by sound to produce 2 nd echo $=2 \mathrm{ym}$ and time $=1 \mathrm{sec}$
$\Rightarrow 2 \mathrm{y}=340 \times \times 1 \Rightarrow \mathrm{y}=\frac{340 \times 1}{2}=170 \mathrm{~m}$
So, Distance b/w two clif $=(85+170)=255 \mathrm{~m}$
7. If 2000 ripples produced in 5 sec in a pond find time period and frequency of ripples formation.

Ans: No. of ripples in $5 \mathrm{~s}=2000$ No. of ripples in $1 \mathrm{~s}=2000 / 5=400$

Frequency $=400 \mathrm{~Hz}$

Time period $=\frac{1}{f}=\frac{1}{400} \mathrm{~s}=0.0025 \mathrm{sec}$
8. A man standing in a valley between two parallel mountains fires a gun and hears echo at an interval of 2 s and 3.5 s . What is (a) The distance between two mountains (b) the location of the man with respect to the mountain?

Ans: speed of sound $=340 \mathrm{~m} / \mathrm{sec}$

Let the distance b/w nearest clif and man = x m
and the distance b / w distant clif and man $=y m$

Distance b / w two clif $=(\mathrm{x}+\mathrm{y}) \mathrm{m}$

Total distance covered by sound to produce first echo $=2 \times \mathrm{m}$ and time $=2 \mathrm{sec}$
$\Rightarrow 2 y=340 \times 2 \Rightarrow x=(340 \times 2) / 2=340 \mathrm{~m}$

Total distance covered by sound to produce 2 nd echo $=2 \mathrm{ym}$ and time $=3.5 \mathrm{sec}$

 ACBSE Coaching for OWathematics and Science

$\Rightarrow 2 \mathrm{y}=340 \times 3.5 \Rightarrow \mathrm{y}=(340 \times 3.5) / 2=595 \mathrm{~m}$

So, Distance b/w two clif $=(340+595)=935 \mathrm{~m}$
9. Calculate the wavelength of a sound whose frequency is 220 Hz and speed is $440 \mathrm{~m} / \mathrm{s}$ in a given medium.

Ans: $v=440 \mathrm{~m} / \mathrm{s} ; \mathrm{f}=220$
$v=f \times \lambda \Rightarrow 440=\lambda \times 220 \Rightarrow \lambda=\frac{440}{220}=2$
10. A body is vibrating 6000 times is 1 minute. If the velocity of sound in air is 360 m / s, find
(i) Frequency in Hz ` (ii) wavelength of sound.

Ans: A body is vibrating 6000 times is 1 minute
$\mathrm{f}=\frac{6000}{60}=100 \mathrm{~Hz}$
$\lambda=\frac{v}{f}=360 / 100=3.6 \mathrm{~m}$
11. A stone is dropped from a 500 m tall building into a pond. When is sound splash heard? Given $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, speed of sound $=340 \mathrm{~m} / \mathrm{s}$.

Ans: Time taken by stone to reach pond $=\mathrm{t}$
$: s=u t+1 / 2$ gt $^{2} \Rightarrow 500=1 / 2 \times 10 \times t^{2} \Rightarrow t=10 \mathrm{sec}$
Time taken by sound to travel $500 \mathrm{~m}=\mathrm{D} / \mathrm{v}=500 / 340=1.47 \mathrm{sec}$
total time to hear splash $=10 \mathrm{sec}+1.47 \mathrm{sec}=11.47 \mathrm{sec}$
12. An echo is heard in 3 sec after the emission of sound. If speed of sound in air is $342 \mathrm{~m} / \mathrm{s}$, what is the distance of the reflecting surface from the source?

Ans: $\mathrm{d}=\frac{v \times t}{2}=\frac{342 \times 3}{2}=513 \mathrm{~m}$

 ACBSE Coaching for D(athematics and Science

13. A source of wave produces 40 crests and 40 troughs in 0.4 sec . Find the frequency of the wave.

Ans: As one crest and one trough together make a wave produces 40 crests and 40 troughs is equal to 40 waves. So the source produces 40 waves per second so 40 Hz is the frequency.
14. Water wave enter a dock at a rate of 120 crests per minute. At the dock are 2 poles 12 m apart from each other. a worker watches a particular wave crest pass from one pole to another in 4 s .what is the frequency of the wave?

Ans: Frequency is the number of waves crossing a referring point,
As Water wave enter a dock at a rate of 120 crests per minute $f=120 / 60=2$
Water wave enter a dock at a rate of 120 crests per second. So the frequency is 2 Hz .
15. A sonar device on a submarine sends out a signal and receives an echo 5 s later. Calculate the speed of sound in water if the distance of the object from the submarine is 3625 m .

Ans: Time taken to hear the echo, $\mathrm{t}=5 \mathrm{~s}$
Distance of the object from the submarine, $\mathrm{d}=3625 \mathrm{~m}$
Total distance travelled by the sonar waves during the transmission and reception in water $=2 \mathrm{~d}$ Velocity of sound in water, $\mathrm{v}=\frac{2 d}{t}=\frac{2 \times 3625}{5}=1450 \mathrm{~m} / \mathrm{s}$

