ACBSE Coaching for Mathematics and Science

'(1) A person observes smoke from a cannon when it was fired. 1.5 seconds later, he hears the bang. If the cannon is 510 m away from the observer, calculate velocity of the sound in air.

Solution:

Data: Distance = d = 510 m, time = t = 1.5 seconds. **To find:** Velocity of sound

Velocity = $\frac{\text{Distance}}{\text{Time}}$ (Relationship for velocity) v = $\frac{510}{1.5}$ = 340 m/s

Ans. The velocity of the sound in air was 340 m/s.

(2) Using the SONAR, sound pulses are emitted at the surface of the water. The echo is heard after 3 seconds. Find the depth of the sea at that place if velocity of sound in seawater = 1550 m/s.

Solution:

Data: Velocity of sound in seawater = 1550 m/s. Total time taken by the pulse to leave the transmitter and get reflected from the seabed = 3 seconds (for two way journey)

 $\therefore \text{ Time taken by the pulse for 1 way journey} = \frac{3}{2}$

To find: Depth of the sea i.e. distance.

 $Velocity = \frac{Distance}{Time}$ (Relationship for velocity)

:. Distance = Velocity x Time

:. Distance = 1550 x 1.5 = 2,325 m

Ans. The depth of the sea at that place = 2,325 m.

*(3) A person standing before a cliff shouts and hears the echo after 1.6 seconds. If the speed of sound in air is 340 m/s, state the distance between the person and the cliff. Solution:

Data: Speed of the sound = 340 m/s. Time for the echo to be heard = 1.6 second. Time for 1 way journey of the

sound =
$$\frac{1.6}{2}$$
 = 0.8 s.

To find: Distance between the person and the cliff.

 $Velocity = \frac{Distance}{Time}$ (Relationship for velocity)

.. Distance = Velocity x Time

:. Distance = Speed x Time

.. Distance = 340 x 0.8

: Distance = 272 m

Ans. The distance between the person and the cliff = 272 m.

(4) A person hears the thunder 3 seconds after a flash of lightning is seen. At what distance has the lightning struck? (Velocity of sound in air = 340 m/s). Solution:

Data: Time = 3 s, velocity of sound = 340 m/s.

To find: Distance.

 $Velocity = \frac{Distance}{Time}$ (Relationship for velocity)

:. Distance = Velocity x Time

:. Distance = 340 x 3

:. Distance = 1020 m

Ans. The lightning struck at a distance of 1020 m.

* (5) Velocity of sound in air at 0 °C is 332 m/s. It increases by 0.6 m/s for each degree Celsius rise in temperature. At what temperature of air will the velocity be 350 m/s.? Solution:

Data: Let the temperature of air be t $^{\circ}$ C Velocity of sound in air at t $^{\circ}$ C = 350 m/s

Velocity of sound in air at 0 °C = 332 m/s
∴ The difference between the two velocities = 350 m/s

-332 m/s = 18 m/s.

 For an increase of velocity of 0.6 m/s temperature increases by 1 °C.

∴ For an increase of velocity of 18 m/s, temperature increases by ¹⁸/_{0.6} = 30 °C.

: The final temperature = Initial temperature + increase in temperature

.. The final temperature = (0 + 30) °C

.. The final temperature = 30 °C

Ans. The temperature of air, when the velocity of sound is 350 m/s is 30 °C.

(6) A person observes the smoke from a gun 0.7 second before he hears its bang. If the person is 238 m away from the gun, find the speed of sound in air. Solution:

Data: Distance = 238 m, time = 0.7 s.

To find: Speed of the sound in air.

Speed = $\frac{\text{Distance}}{\text{time}} = \frac{238}{0.7} = 340 \,\text{m/s}$

Ans. Speed of sound in air = 340 m/s.

ACBSE Coaching for Mathematics and Science

(7) A person, standing 204 m away from a mountain, fires a gun. Find after how many seconds he hears an echo of the gunfire if the speed of sound in air is 340 m/s.

Data: Speed = 340 m/s, Distance between the person and the mountain is 204 m. There is an echo, hence the sound travels from the gun to mountain and back to the person.

 \therefore Total distance covered by the sound = (204 x 2) m = 408 m.

To find: Time taken for the echo to be heard.

$$Speed = \frac{Distance}{Time}$$

$$Time = \frac{Distance}{Speed} = \frac{408}{340} = 1.2 \text{ seconds}$$

Ans. The person hears the first echo 1.2 seconds after the gun was fired.

(8) Velocity of sound in air at 0 °C is 332 m/s. at 'ordinary temperature' is 340 m/s. Calculate the 'ordinary temperature' in terms of °C. Solution:

Data: Velocity of sound in air at 0 °C = 332 m/s. Velocity at 'ordinary temperature' = 340 m/s.

∴ Rise in velocity of sound in air = 340 m/s - 332 m/s = 8 m/s.

The velocity increases by about 0.6 m/s for each degree Celsius rise in temperature of air.

- \therefore Rise in temperature of air = $\frac{8}{0.6}$ = 13. $\overline{3}$ °C
- ∴ Temperature of air when the velocity of sound is 340 m/s = 0 + 13.3 °C = 13.3 °C

Ans. The word ordinary temperature in this context means a temperature of $13.\overline{3}$ °C.

(9) Velocity of sound in air at 0 °C is 332 m/s and at room temperature it is 344 m/s. Find the room temperature in terms of degree Celsius. Solution:

Data: Velocity of sound in air at 0 °C = 332 m/s. Velocity at 'room temperature' = 344 m/s

∴ Rise in velocity of the sound in air = 344 m/s - 332 m/s = 12 m/s.

The velocity of sound increases by about 0.6 m/s for each degree Celsius rise in temperature of air.

- \therefore Rise in Temperature of air = $\frac{12}{0.6}$ = 20 °C.
- ∴ The temperature when velocity of sound in air = 344 m/s = 0 + 20 °C = 20 °C

Ans. Room temperature = 20 °C.

(10) Two soldiers A and B are standing on two hill tops C and D respectively which are 760 m apart. Wind is blowing from C to D at a velocity of 144 km/hr. The soldiers fire their guns one after the other. Soldier B fires his gun 5 minutes after soldier A fires his gun. How much time will it take for sound of the gun fire to reach from A to B and from B to A. (Take velocity of sound in still air to be 340 m/s.) Solution:

Wind velocity =
$$144 \text{ km/hr}$$

= $144 \times \frac{1000}{60 \times 60} \text{ m/s}$
= $40 \text{ m/s} \dots \text{(I)}$

Wind blows from C to D, soldier A is at C and soldier B is at D.

Velocity of sound when it travels from A to B is 340 m + 40 m = 380 m/s

Velocity =
$$\frac{\text{Distance}}{\text{Time}}$$
 (Relationship for velocity)

Time = $\frac{\text{Distance}}{\text{Speed}}$ = $\frac{760}{380}$ = 2 seconds.

Velocity of sound when it travels from B to A is 340 m - 40 m = 300 m/s

Time =
$$\frac{\text{Distance}}{\text{Velocity}} = \frac{760}{300} = 2.53 \text{ seconds.}$$

- Ans. (i) It takes 2 seconds for the sound to reach from Ato B.
 - (ii) It takes about 2.53 seconds for the sound to reach from B to A.
- (11) A person stands between two cliffs and fires a gun. He hears two successive echoes in 2 seconds and 5 seconds after the gun was fired. Find the distance between the two cliffs.

Solution:

Let the distance between the person and the nearest cliff = (x) m and let the distance between the person and

distant cliff = (y) m.

- The distance between two cliffs = (x+y) m...(I) First echo was heard 2 s after the gun was fired. Total distance covered by the sound to produce the first echo = (x+x)=(2x) m Time required to cover (2x) m (i.e. two way journey)=2s
- :. Time required to cover (x) m (i.e. one way journey) = $\frac{2}{2}$ = 1 s

$$Velocity = \frac{Distance}{Time}$$
 (Relationship for velocity)

JSUNIL TUTORIAL

ACBSE Coaching for Mathematics and Science

- :. Distance = Velocity x Time
- :. Distance (x) = 340 x 1 = 340 m.

The second echo, produced by the distant cliff was heard after 5 s.

The total distance covered by the sound to produce this echo = (2y) m.

Time taken by the sound to complete one-way journey

$$=\frac{5}{2}=2.5$$
 s.

Distance covered by the sound during 1 way journey

Velocity x Time340 x 2.5 = 850 m.

:. Distance (y) = 850 m

Distance x + y = (340 + 850) m = 1190 m= 1.19 km

Ans. The distance between the two cliffs is 1190 m or 1.19 km.

(12) A boat equipped with SONAR is sailing in a fresh water lake. It emits a sharp pulse of sound, which is reflected from the bottom of the lake after 0.5 s. Determine the depth of the lake at that spot. Solution:

Velocity of sound in fresh water is 1410 m/s. The time taken for sound to be reflected from the lake bottom (i.e. after two way journey) = 0.5 s

 $\therefore \text{ Time required for 1 way journey} = \frac{0.5}{2} = 0.25 \text{ s}$

Velocity = $\frac{\text{Distance}}{\text{Time}}$

(Relationship for velocity)

:. Distance = Velocity x Time

:. Distance = 1410 x .25

:. Distance = 352.5 m

Ans. The distance between the boat and the bottom of the lake i.e. depth of the lake is 352.5 m.

13. Calculate the wavelength of a sound wave whose frequency is 220 Hz and speed is 440 m/s in a given medium. (Textbook question)

SOLUTION Velocity of the sound wave (v) = 440 m/s

Frequency (v) of the sound wave = 220 Hz

Wavelength of the sound wave $(\lambda) = ?$

(to be calculated)

We know,
$$t' = v \times \lambda$$

 $440 \text{ m/s} = 220 \text{ Hz} \times 1$

or
$$\lambda = \frac{440 \text{ m/s}}{220 \text{ Hz}}$$

 $\lambda = 2 \text{ m}$

So, the wavelength of the sound wave is 2 m.

14. A source produces 15 waves in 3 seconds. The distance between a crest and a trough is 15 cm. Find the (a) frequency (b) wavelength, and (c) velocity of the wave.

SOLUTION (a) Number of waves produced in 3 seconds

.. Number of waves produced in 1 second

$$=\frac{15}{3}=5$$

So, the frequency (v) of this wave is 5 Hz.

(b) Distance between crest and trough

= 15 cm = half the wavelength

So, $\lambda = 15 \times 2 \text{ cm}$

$$= 30 \text{ cm} = \frac{30}{100} \text{ m} = 0.3 \text{ m}$$

Thus, the wavelength of the wave is 30 cm or 0.3

(c) We know,

$$v = \mathbf{v} \times \lambda$$

 $v = 5 \text{ Hz} \times 0.3 \text{ m}$
 $v = 1.5 \text{ m/s}$

Thus, the velocity of the wave is 1.5 m/s.

15. A body vibrating with a time period of 2 milliseconds produces a wave travelling in a medium with a velocity of 1250 m/s. What is the wavelength?

SOLUTION Time period (T) = 2 milliseconds

=
$$\frac{2}{1000}$$
 seconds

Velocity (v) = 1250 m/s

Wavelength $(\lambda) = ?$

We know, $v = v \times \lambda$

$$v = \frac{1}{T} \times \lambda$$
 [since $\mathbf{v} = \frac{1}{T}$]

$$1250 \text{ m/s} = \frac{1}{\frac{2}{1000} \text{ s}} \times \lambda$$

$$1250 \text{ m/s} = \frac{1000}{2} \text{ s} \times \lambda$$

$$\lambda = 1250 \text{ m/s} \times \frac{2}{1000} \text{ s}$$

Thus, the wavelength of wave is 2.5 m.