9th Comprehensive test paper Chapter Triangles

MULTIPLE CHOICE OUESTIONS

1. From the given figure we can conclude

Mathematics for Class IX

(a) $\triangle ABC \cong \triangle PQR$

(b) $\triangle ABC \cong \triangle OPR$

(c) $\triangle ABC \cong \triangle RPQ$

(d) $\Delta BCA \cong \Delta ROP$

Fig. Q. 1

- 2. The triangles given above are congruent by
 - (a) SAS Axiom (b) As A axiom (c) RHS Axiom (d) SSS Axiom.

- 3. $\triangle ABC \cong \triangle XYZ$, $\angle A = 55^{\circ}$ and BC = 3.5 cm then $\angle X$ and zy are respectively
 - (a) 45°, 5.5 cm (b) 55°, 3.5 cm (c) 3.5 cm, 45° (d) 65° 3.5 cm.
- 4. $\triangle PQR \cong \triangle BAC$, AB = (3x 2) cm and QP = (2x + 3) cm then x = 2
 - (a) 1 cm
- (b) 3 cm
- (c) 5 cm
- (d) 2 cm
- 5. Which one of the following measurement cannot be sides of a triangle.
 - (a) 3, 4, 5
- (b) 5, 8, 12
- (c) 7, 6, 4
- (d) 4, 12, 7
- 6. In $\triangle ABC$, AB = 13 cm, BC = 5 cm and CA = 12 cm then which angle will be greatest
 - (a) \(\angle A
- (b) ∠B
- (c) ∠C
- (d) all are equal
- 7. In triangles PQR and STU, PQ = TSRP = US then which two angles should be equal so t $\Delta PQR \cong \Delta STU$ by SAS
 - (a) $\angle P = \angle T$ (b) $\angle Q = \angle T$

- (c) $\angle R = \angle P$ (d) $\angle P = \angle S$
- 8. In given figure longest side is
 - (a) PQ
- (b) *QR*
- (c) PR
- (d) all sides equal.

9th Comprehensive test paper Chapter Triangles

- In the given fig two triangles congruent. Name the two triangles in order and by which congruency
 - (a) $\triangle ABC \cong \triangle PRQ$, by SAS
- (b) $\triangle ABC \cong \triangle PQR$ by SSS
- (c) $\triangle ABC \cong \triangle PQR$ by SAS
- (d) $\triangle ACB \cong \triangle PQR$ by SAS

- 10. $\triangle ABC \cong \triangle RPQ$ if $\angle A = 30^{\circ}$ and $\angle Q = 70^{\circ}$ than $\angle C =$
 - (a) 30°
- (b) 80°
- (c) 70°
- (d) 100°

- $\triangle ABC$ is an isosceles triangle in which AB = AC. Side BA is produced to D, such that AD = AB. Show that $\angle BCD$ is a right angle.
- 2. Two sides AB, BC and median AM of one triangle ABC are respectively equal to sides PQ, QR and median PN of $\triangle PQR$. Prove that (i) $\triangle ABM \cong \triangle PQN$. (ii) $\triangle ABC \cong \triangle PQR$.
- If two altitudes of a triangle are equal then the triangle is an isosceles triangle.
- In Fig. $AP \perp l$ and PR > PQ. Show that, AR > AQ.

- 5. Show that the difference of any two sides of a triangle is less than the third side.
- 6. In the given figure, AD = AE, BD = EC prove AB = AC.

Page-02

9th Comprehensive test paper Chapter Triangles

- 7. O' is any interior point of $\triangle ABC$, prove that $OA + OB + OC > \frac{1}{2}(AB + AC + BC)$.
- 8 If P is a point on the perpendicular bisector of a line segment AB, then prove P is equidistant from A and B.
- In right triangle ABC, right angled at C, M is the mid point of hypotenuse AB, C is joined to M and produced to a point D, such that DM = CM. Point D is joined to point B. Show that: (i) $\triangle AMC \cong \triangle BMD$. (ii) $\angle DBC$ is right angle.
 - (iii) $\triangle DBC \cong \triangle ACB$. (iv) $CM = \frac{1}{2}AB$.
- In Fig. AC = AE, AB = AD and $\angle BAD = \angle EAC$. Show that, BC = DE.

