Time: 40 Mins M.M. 20

- 1. If the difference between two complementary angles is 20° then the angles are
 - (a) 40,50°
- (b) 70°, 50°
- (c) 35°, 55°
- (d) 45, 25
- 2. AD is a straight line, OB bisects $\angle AOC$, if $\angle DOC = 40^{\circ}$ then $\angle AOB =$
 - (a) 60°
- (b) 70°
- (c) 140°
- (d) 80°

- 3. $AB \parallel CD$, then value of x =
 - (a) 80°
- (b) 40°
- (c) 60°
- (d) 20°

- 4. CP is bisector of exterior angle ACD of $\triangle ABC$, $AB \parallel CP$. If $\triangle ACD = 120^{\circ} ABC =$
 - (a) 60°
- (b) 70°
- (c) 50°
- (d) 40°

- Fig. 4
- 5. If sum of two angles of a triangle is equal to the third angle then it is a
 - (a) equilateral triangle
- (b) Isosceles triangle
- (c) right angled triangle
- (c) obtuse angled triangle.

9th Comprehensive test paper Chapter Lines and Angles

- 6. In $\triangle PQR$, $\angle P = 90^{\circ}$, $PS \perp QR$. Prove $\angle QPS = \angle PRQ$.
- 7. In figure Q7, prove QT || RP, if QT bisects $\angle PQS$ and PQ = PR.

- 8. Side BC of $\triangle ABC$ is produced to a point D, bisector of $\angle A$ meets BC at L. Prove $\angle ABC + \angle ACD = 2 \angle ALC$.
- 9. In figure Q9, sides AB and AC are produced to points E and F. BO and CO are bisectors of $\angle CBE$ and $\angle BCF$ respectively. Prove that $\angle BOC = 90 \frac{1}{2} \angle BAC$.
- 10. In the given figure Q10, the side QR is produced to a point S. If the bisectors of $\angle PQR$ and $\angle PRS$ meet at point T, prove $\angle QTR = \frac{1}{2} \angle QPR$.

Fig. Q9

In the given figure, l || m, AO and BO are bisector of $\angle PAB$ and $\angle QBA$ respectively. Prove that $\angle AOB$ is a right angle.

