JsuTll Tutomal
 ACBSE Coaching for OCathematics and Science

Mole concept numerical problems with answer class9

CBSE Set Paper - 2

1. Determine the mass of $6.022 \times 10^{\wedge} 23$ number of N_{2} molecules.

Sol: the mass of $6.022 \times 10^{\wedge} 23$ number of N_{2} molecules $=$ mass of $N_{2}=14 \times 2=28 \mathrm{~g}$
2. Calculate the number of particles in- (i) 8 g of O_{2} molecules (ii) 2.5 mol of calcium atoms.

Sol: (i) 32 g of O_{2} have molecules $=6.022 \times 10^{\wedge} 23$
So, 8 g of O_{2} have molecules $=\left(6.022 \times 10^{\wedge} 23 / 32\right) \times 8=1.5 \times 10^{\wedge} 23$ molecules
(ii) 1 mol of calcium have $\mathrm{a}=6.022 \times 10^{\wedge} 23$ atoms

So, 2.5 mol of calcium have $\mathrm{a}=6.022 \times 10^{\wedge} 23 \times 2.5=15.055 \times 10^{\wedge} 23$ atoms
3. What is the mass of 2.5 mol of Methane?

Sol. the mass of 1 mol of $\mathrm{CH}_{4}=12+4=16 \mathrm{~g}$
so, the mass of 2.5 mol of Methane $=16 \times 2.5=36 \mathrm{~g}$
4.Find the mass of one molecule of water.

Sol: the mass of $6.022 \times 10^{\wedge} 23$ molecule of water $=18 \mathrm{~g}$
the mass of one molecule of water $=18 / 6.022 \times 10^{\wedge} 23=2.989 \times 10^{\wedge}(-23) \mathrm{g}$
5.Calculate the number of water molecules and number of oxygen and hydrogen atoms in a drop of water containing 0.03 mol of water.

Sol: the number of water molecules in 1 mole of water $=6.022 \times 10^{\wedge} 23$
So, the number of water molecules in 0.03 mole of water $=6.022 \times 10^{\wedge} 23 \times 0.03=2.007 \times 10^{\wedge} 21$
In water ratio of $\mathrm{H}: \mathrm{O}=2: 1$
Number of oxygen atoms in a drop of water containing 0.03 mol of water $=1 \times 2.007 \times 10^{\wedge} 21=2.007 \times 10^{\wedge} 21$
Number of hydrogen atoms in a drop of water containing 0.03 mol of water $=2 \times 2.007 \times 10^{\wedge} 21=2 \times 4.014 \times 10^{\wedge} 21$
6. How many molecules of water and oxygen atoms are present in 0.9 g of water?

Sol: 18 g of water contains 1 mole
So, 0.9 g of water contains ($1 / 18$)x $0.9=0.05$ mole
Number of molecules of water in 0.05 moles $=0.05 \times 6.02 \times 10^{\wedge} 23=3.010 \times 10^{\wedge} 22$
As one molecule of water contains one oxygen atom ,so number of oxygen atoms $=3.010 \times 10^{\wedge} 22$
7. Calculate mass of Nitrogen $\left(\mathrm{N}_{2}\right)$ which contains same number of molecules as are present in 4.4 grams of Carbon-di-oxide $\left(\mathrm{CO}_{2}\right)$.

Sol: molecules present in 44 grams of Carbon-di-oxide $\left(\mathrm{CO}_{2}\right) .=6.02 \times 10^{\wedge} 23$

JSTIN THLITM:
 ACBSE Coaching for O(athematics and Science

So, molecules present in 4.4 grams of Carbon-di-oxide $\left(\mathrm{CO}_{2}\right) .=\left(6.02 \times 10^{\wedge} 23 / 44\right) \times 4.4=6.02 \times 10^{\wedge} 22$
Now, Mass of $6.02 \times 10^{\wedge} 23$ molecules of $N_{2}=28 \mathrm{~g}$
So, Mass of $6.02 \times 10^{\wedge} 22$ molecules of $N_{2}=\left(28 / 6.02 \times 10^{\wedge} 23\right) \times 6.02 \times 10^{\wedge} 22=2.8 \mathrm{~g}$
8.Atomic mass of gold is 197 u . How many moles of gold are present in an ornament containing 88.65 grams of gold?

Sol: in 197 g of gold $=1$ mole so, 88.65 grams $=(1 / 197) \times 88.65=0.45 \mathrm{~mol}$
9. How many moles of SO_{2} have same mass as 3 moles of oxygen?

Sol: mass of 3 moles of oxygen $=3 \times 16=48 \mathrm{~g}$
Now, mass of SO2 $=32+2 \times 16=64 \mathrm{~g}$
as 64 g of $\mathrm{SO} 2=1$ mole then 48 g of $\mathrm{SO} 2=(1 / 64) \mathrm{x} 48=0.75$ mole
10. A glass of water contains 5 mol of water. How many molecules of water are present?

Sol: 1 mole of water contain $=6.02 \times 10^{\wedge} 23$ molecules of water
So, 5 mole of water contain $=5 \times 6.02 \times 10^{\wedge} 23=3.011 \times 10^{\wedge} 24$ molecules of water
11. What is the mass of a formula unit of $\mathrm{Na}^{+} \mathrm{Cl}^{-}$?

Sol: the mass of a formula unit of $\mathrm{Na}^{+} \mathrm{Cl}^{-}=$molecular masss of $\mathrm{NaCl}=23+35.5=58.5 \mathrm{u}$
12. How many atoms of Silver are present in a silver wire weighing 5.4 grams?

Sol: 1 mole of silver weighs $108 \mathrm{~g}=6.02 \times 10^{\wedge} 23$ atom
then 5.4 grams of silver contain $=(5.4 / 108) \times 6.022 \times 10^{\wedge} 23=3.011 \times 10^{\wedge} 22$ atoms
13. Calculate the ratio of molecules present in 16 g of methane and 16 g of oxygen.

Sol: molecules present in 16 g of methane / molecules present in 16 g of oxygen $=1: 1$
14. Convert into mole. (a) 12 g of oxygen gas (b) 20 g of water (c) 22 g of carbon-dioxide.

Sol: (a) 32 g of oxygen gas $=1 \mathrm{~mol}$
12 g of oxygen gas $=(/ 32) \times 12=0.375 \mathrm{~mol} 1$
(b) 18 g of water $=1 \mathrm{~mole}$

20 g of water $=(1 / 18) \times 20=1.11$ mole
(c) 44 g of carbon-dioxide $=1$ mole

22 g of carbon-dioxide $=0.5$ mole
15. Determine the number of bromide ion in 0.2 mole of $\mathrm{Mg} \mathrm{Br}_{2}$.

No. of Br ion present in 0.2 mole of $\mathrm{Mg} \mathrm{Br}_{2}=2 \times 6.022 \times 10^{\wedge} 23 \times 0.2=2.4088 \times 10^{\wedge} 23$

