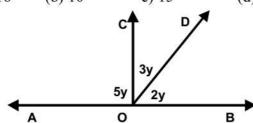
SUMMATIVE ASSESSMENT - I, 2014-2015 **MATHEMATICS CLASS - IX**

Time allowed: 3.15 hours Maximum Marks: 90

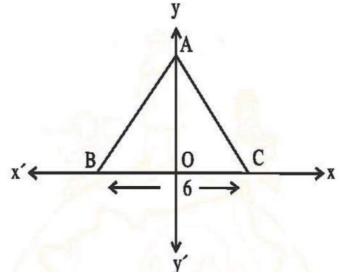
General Instruction:


- All questions are compulsory. (i)
- The question paper consists of 31 questions divided into four sections A, B. C and D. (ii)
- (iii) Section A contains 4 multiple-choice questions of 1 mark each. Section B contains 6 questions of 2 marks each. Section C contains 10 questions of 3 marks each. Section D contains 11 questions of 4 marks each.
- Use of calculator is not permitted. (iv)

SECTION - A

- 1. The value of $(\sqrt{5} + \sqrt{2})(\sqrt{5} \sqrt{2})$ is:

- (a) 10 (b) 7 (c) 3 (d) $\sqrt{3}$ 2. On dividing $x^3 + 3x^2 + 3x + 1$ by 5 + 2x we get remainder:
- (a) $\frac{8}{27}$ (b) $\frac{27}{8}$ (c) $-\frac{27}{8}$ (d) $-\frac{8}{27}$


- 3. In the fig. the value of y is:
 - (a) 16^0
- (b) 10^0
- c) 15⁰
- (d) 18^0

- **4.** If the area of an equilateral triangle is $36\sqrt{3}$ cm², then its perimeter is
 - (a) 64 cm
- (b) 60 cm
- (c) 36 cm
- (d) none of these

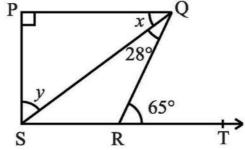
SECTION – B

5. ABC is an equilateral as shown in figure. Find the coordinates of its vertices.

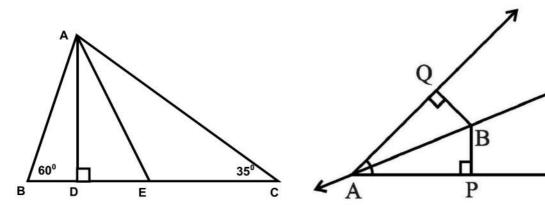
JSUNIL TUTORIAL

ACBSE Coaching for Mathematics and Science

- **6.** If $x = \frac{1}{\sqrt{3} \sqrt{2}}$, find $\sqrt{x} + \frac{1}{\sqrt{x}}$.
- 7. Factorize the polynomial: $8x^3 (2x y)^3$.

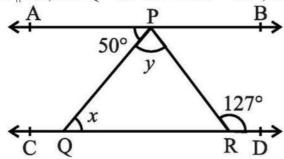


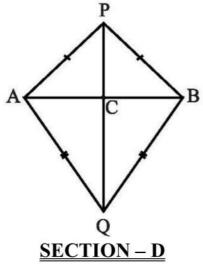
- **8.** In adjoining figure, if AC = BD, then prove that AB = CD.
- 9. Find the value of k, if x 1 is a factor of $4x^3 + 3x^2 4x + k$.
- 10. Without actual division, prove that $2x^4 5x^3 + 2x^2 x + 2$ is divisible by $x^2 3x + 2$.


SECTION - C

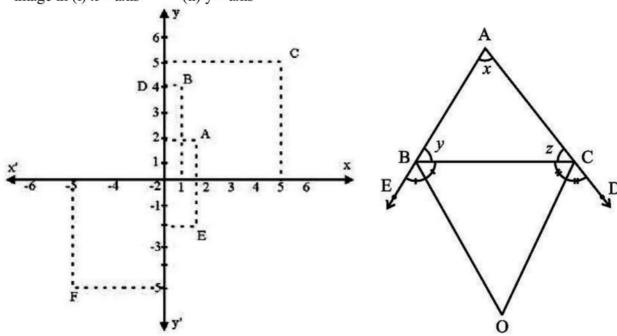
11. If
$$x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$
, find $x^2 + \frac{1}{x^2}$

- 12. Find the value of a and b in $\frac{5+2\sqrt{3}}{7+4\sqrt{3}} = a+b\sqrt{3}$
- **13.** Factorise: $27x^3 \frac{1}{216} \frac{9}{2}x^2 + \frac{1}{4}x$
- **14.** In the below figure, if PQ \perp PS, PQ \parallel SR, \angle SQR = 28° and \angle QRT = 65°, then find the values of x and y.


15. In given figure AD \perp BC, AE is the angle bisector of \angle BAC. Find \angle DAE


- **16.** Line l is the bisector of an angle $\angle A$ and B is any point on l. BP and BQ are perpendiculars from B to the arms of $\angle A$ (see the above side figure). Show that:
 - (i) \triangle APB \cong \triangle AQB (ii) BP = BQ or B is equidistant from the arms of \angle A.
- 17. Prove that the sum of any two sides of a triangle is greater than twice the median drawn to the third side.
- 18. Find the integral zeroes of the polynomial $p(x) = 2x^3 + 5x^2 5x 2$.

ACBSE Coaching for Mathematics and Science

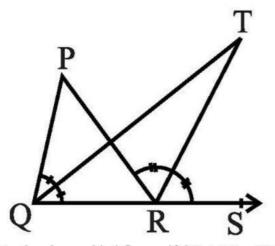

19. In the below figure, if AB || CD, \angle APQ = 50° and \angle PRD = 127°, find x and y.

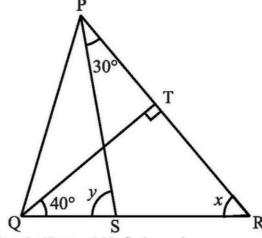
20. AB is a line-segment. P and Q are points on opposite sides of AB such that each of them is equidistant from the points A and B(see in the adjoining figure). Show that the line PQ is the perpendicular bisector of AB.

21. From the figure, find the coordinates of A, B, C, D, E and F. Which of the points are mirror image in (i) x – axis (ii) y – axis

22. If $x = \frac{1}{2-\sqrt{3}}$, find the value of $x^3 - 2x^2 - 7x + 5$.

23. If polynomials $ax^3 + 3x^2 - 3$ and $2x^3 - 5x + a$ leaves the same remainder when each is divided by x - 4, find the value of a.


ACBSE Coaching for Mathematics and Science


- **24.** Factorise: $\left(\frac{1}{2}x 3y\right)^3 + \left(3y \sqrt{3}z\right)^3 + \left(\sqrt{3}z \frac{1}{2}x\right)^3$
- **25.** Give possible expressions for the length and breadth of rectangles, in which its areas is given by $35y^2 + 13y 12$
- **26.** Find the value of a and b so that the polynomial $x^3 10x^2 + ax + b$ exactly divisible by (x 1) as well as (x 2).
- **27.** There is a slide in a park. One of its side walls has been painted in some colour with a message "KEEP THE PARK GREEN AND CLEAN". If the sides of the wall are 15 m, 11 m and 6 m, find the area painted in colour. What values you are depicting? Write any two values.

15 m

- **28.** In the above sided figure, the sides AB and AC of a triangle ABC are produced to points E and D respectively. If bisectors BO and CO of \angle CBE and \angle BCD respectively meet at point O, then prove that \angle BOC = $90^{\circ} \frac{1}{2} \angle$ BAC.
- **29.** In the below figure, the side QR of . PQR is produced to a point S. If the bisectors of \angle PQR and \angle PRS meet at point T, then prove that \angle QTR = $\frac{1}{2}$ \angle QPR.

- **30.** In the above sided figure, if QT \perp PR, \angle TQR = 40° and \angle SPR = 30°, find x and y.
- **31.** If in two right triangles, hypotenuse and one side of a triangle are equal to the hypotenuse and one side of other triangle, prove that the two triangles are congruent