
 ACBSE Coaching for O(athematics and Science

SUMMATIVE ASSESSMENT - I, 2015
MATHEMATICS Class - IX
Time Allowed: 3 hours
Maximum Marks: 90

General Instructions:

1. All questions are compulsory.
2. The question paper consists of 31 questions divided into four sections A, B, C and D. Section-A comprises of 4 questions of 1 mark each; Section-B comprises of 6 questions of 2 marks each; Section-C comprises of 10 questions of 3 marks each and Section-D comprises of 11 questions of 4 marks each.
3. There is no overall choice in this question paper. 4. Use of calculator is not permitted.
Section - A

Question numbers 1 to 4 in Sections-A one mark questions

1. Find the value of $(81)^{0.16} \times(81)^{0.09}$
2. Write $(x-2)^{3}$ in the expanded form.
3. In the given figure, $A B$ II CD and $/$ is a transversal. $\mathrm{If}<1=110^{\circ}$, find <2 and <3.

4. Point A is on y-axis and is at a distance of 3 units from x-axis on the positive side of y-axis. Write its coordinates.

Section-B comprises of 6 questions of 2 marks each

5. Simplify $\frac{2}{\sqrt{5}-\sqrt{3}}$ by rationalise the denominator.
6. Find $(x+1 / x)$ if $\left(x^{2}+1 / x^{2}\right)=23$
7. In the given figure, we have $<1=<2$ and $<3=<4$. Show that $<A B C=<D B C$. State the Euclid's axiom used by you.

JSMIN TMIORIL ACBSE Coaching for O(athematics and Science

8. Two line segments $A B$ and $C D$ intersect each other at O such that $A O=O B$ and $C O=O D$. Prove that $A C=B D$.
9. The longest side of a right angled triangle is 125 m and one of the remaining two sides is 100 m . Find its area using Heron's formula.
10. In the coordinate plane, draw a square of side 3 units, taking origin as one vertex. Also, write the coordinates of its vertices.

Question numbers 11 to 20 in Sections - C are three marks questions

11. Represent $\sqrt{4.2}$ on the number line.
12. Find the values of a and b if $a+b \sqrt{6}=\frac{5+\sqrt{6}}{5-\sqrt{6}}$
13. One zero of the polynomial $2 x^{3}-9 x^{2}-2 x=24$ is 2 . Find the other zeroes of the polynomial.
14. Factorise: $1000 x^{3}+1331 y^{3}+3300 x^{2} y-3630 y^{2} x$
15. In $\triangle A B C$, it is given that $<C-<A=40^{\circ}$ and $<C-<B=20^{\circ}$. Find $<A$, <B and < C.
16. In the figure, find x and y if III m and p II q.
17. In figure PQ and RS are two mirrors placed parallel to each other.

An incident ray $A B$ strikes the mirror $P Q$ at B, the reflected ray moves along the path $B C$ and strikes the mirror RS at C and again reflects back along CD. Prove that $A B \| C D$.

18. Prove that in a triangle exterior angle formed by producing one side of triangle is equal to its interior opposite angles.
19. If two diagonals of a rhombus are of lengths 90 m and 400 m , then find the height and perimeter of the rhombus.
20. Locate the points $A(1,6), B(0,4), C(7,0), D(-2,-2), E(4,-1), F(2,-3), G(-1,1)$ and $H(-2,-3)$ in the cartesian plane.

ACBSE Coaching for O(athematies and Science

Question numbers 21 to 31 in Sections - D are four marks questions.
21. if $x=\frac{\sqrt{2}+1}{\sqrt{2}-1}$ and $y=\frac{\sqrt{2}-1}{\sqrt{2}+1}$ find the value of $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{xy}$.
22. if $x=\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}$ and $y=\frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}$ find the value of $\frac{x 2+y 2+x y \text {. }}{x 2+y 2-x y}$
23. Find the values of p and q so that $(x+1)$ and $(x-1)$ are factors of $x^{4}+\mathrm{p} x^{3}+2 x^{2}-3 x+\mathrm{q}$
24. Give possible expressions for the length and breadth of the rectangle, in which the area is given by: as $25 a^{2}-35 a+12$
25. If the polynomial $b-x-10 x^{2}+8 x^{3}$, is exactly divisible by $1-x$, then find value of b. Hence factories the polynomial.
26. The polynomial $p(x)=x^{4}-2 x^{3}+3 x^{2}-a x+3 a-7$ when divided by $(x+1)$ leaves the remainder 19 . Find ' a '. Then, find the remainder when $\mathrm{p}(x)$ is divided by $x+2$
27. $A B C$ is a triangle in which $\angle B=2 \angle C, D$ is point on side $B C$ such that $A D$ bisect $\angle B A C$ and $A B=C D$.Prove that $\angle B A C=72^{\circ}$
28. In the given figure $A D=B D$. Prove that $B D<A C$.

29. In $\triangle \mathrm{ABC}, \mathrm{BD}$ and CD are internal bisector of $<\mathrm{B}$ and $<\mathrm{C}$ respectively. Prove that $180+<y=2 x$.

30. Two sides $A B$ and $B C$ and median $A M$ of one triangle $A B C$ are respectively equal to sides $P Q$ and $Q R$ and median PN of a $\Delta \mathrm{PQR}$. Show that (i) $\Delta \mathrm{ABM} \cong \Delta \mathrm{PQN}$ (ii) $\Delta \mathrm{ABC} \cong \triangle \mathrm{PQR}$
31. Prove that any two sides of a triangle are together greater than twice the median drawn to the third side.

