संकलित परीक्षा - I, 2014
 SUMMATIVE ASSESSMENT - I, 2014
 गणित/ MATHEMATICS
 कक्षा - IX / Class - IX

निर्धारित समय:3 hours

Time Allowed: 3 hours

अधिकतम अंक : 90
Maximum Marks: 90

सामान्य निर्देश :

1. सभी प्रश्न अनिवार्य हैं।
2. इस प्रश्न पत्र में 31 प्रश्न हैं, जिन्हें चार खण्डों अ, ब, स तथा द में बांटा गया है। खण्ड-अ में 4 प्रश्न हैं जिनमें प्रत्येक 1 अंक का है; खण्ड-ब में 6 प्रश्न हैं जिनमें प्रत्येक के 2 अंक हैं; खण्ड-स में 10 प्रश्न हैं जिनमें प्रत्येक के 3 अंक हैं; तथा खण्ड-द में 11 प्रश्न हैं जिनमें प्रत्येक के 4 अंक हैं।
3. इस प्रश्न पत्र में कोई विकल्प नहीं है।
4. कैलकुलेटर का प्रयोग वर्जित है।

General Instructions:

1. All questions are compulsory.
2. The question paper consists of 31 questions divided into four sections A, B, C and D. Section-A comprises of 4 questions of 1 mark each; Section-B comprises of 6 questions of 2 marks each; Section-C comprises of 10 questions of 3 marks each and Section-D comprises of 11 questions of 4 marks each.
3. There is no overall choice in this question paper.
4. Use of calculator is not permitted.

Find the value of $(81)^{0.16} \times(81)^{0.09} \quad$ ISUNIIL TUTQRINL
$(x-2)^{3}$ का प्रसारित रूप लिखिए।

Write $(x-2)^{3}$ in the expanded form.

In the given figure, $\mathrm{AB} \| \mathrm{CD}$ and l is a transversal. If $\angle 1=110^{\circ}$, find $\angle 2$ and $\angle 3$.

4
दी हुई आकृति में, $\mathrm{AB} \mid \mathrm{CD}$ है तथा l एक तिर्यक रेखा है। यदि $\angle 1=110^{\circ}$ है, तो 1 $\angle 2$ and $\angle 3$ ज्ञात कीजिए।

बिंदु A, y-अक्ष पर स्थित है तथा x-अक्ष से y-अक्ष की धनात्मक दिशा की ओर 3 इकाई की दूरी पर है। इसके 1 निर्देशांक लिखिए।

Point A is on y-axis and is at a distance of 3 units from x-axis on the positive side of y-axis. Write its coordinates.

प्रश्न संख्या 5 से 10 में प्रत्येक का 2 अंक है।
Question numbers $\mathbf{5}$ to $\mathbf{1 0}$ carry two marks each. $\frac{2}{\sqrt{5}-\sqrt{3}}$ को, हर का परिमेयीकरण करते हुए, सरल कीजिए।
Simplify $\frac{2}{\sqrt{5}-\sqrt{3}}$ by rationalise the denominator.
$x+\frac{1}{x}$ का मान ज्ञात कीजिए जबकि $x^{2}+\frac{1}{x^{2}}=23$ है।
Find $x+\frac{1}{x}$ if $x^{2}+\frac{1}{x^{2}}=23$.

दी हुई आकृति में, हमें $\angle 1=\angle 2$ और $\angle 3=\angle 4$ प्राप्त है। दर्शाइए $\angle \mathrm{ABC}=\angle \mathrm{DBC}$ है। प्रयोग किए गए यूक्लिड 2 अभिगृहीत का कथन दीजिए।

In the given figure, we have $\angle 1=\angle 2$ and $\angle 3=\angle 4$. Show that $\angle \mathrm{ABC}=\angle \mathrm{DBC}$. State the Euclid's axiom used by you.

http://jsuniltutorial.weebly.com/

दो रेखाखंड AB और CD परस्पर O पर इस प्रकार प्रतिच्छेद करते हैं कि $\mathrm{AO}=\mathrm{OB}$ और $\mathrm{CO}=\mathrm{OD}$ है। सिद्ध 2 कीजिए कि $\mathrm{AC}=\mathrm{BD}$ है।

Two line segments $A B$ and $C D$ intersect each other at O such that $A O=O B$ and $C O=O D$. Prove that $\mathrm{AC}=\mathrm{BD}$.

एक समकोण त्रिभुज की सबसे लंबी भुजा 125 m है तथा शेष दो भुजाओं में से एक 100 m है। हीरोन के सूत्र का 2 प्रयोग करते हुए, इसका क्षेत्रफल ज्ञात कीजिए।

The longest side of a right angled triangle is 125 m and one of the remaining two sides is 100 m . Find its area using Heron's formula.

निर्देशांक तल में, 3 इकाई भुजा वाला एक वर्ग इस प्रकार खींचिए कि उसका एक शीर्ष 2 मूलबिंदु हो। साथ ही, इस वर्ग के शीर्षों के निर्देशांक भी लिखिए।

In the coordinate plane, draw a square of side 3 units, taking origin as one vertex. Also, write the coordinates of its vertices.

खण्ड-स / SECTION-C

प्रश्न संख्या 11 से 20 में प्रत्येक का $\mathbf{3}$ अंक है।
Question numbers 11 to 20 carry three marks each.
$\sqrt{4.2}$ को संख्या रेखा पर निरुपित कीजिए।
Represent $\sqrt{4.2}$ on the number line.
a और b के मान ज्ञात कीजिए. यदि $\frac{5+\sqrt{6}}{5-\sqrt{6}}=\mathrm{a}+\mathrm{b} \sqrt{6}$ है।

Find the values of a and b if $\frac{5+\sqrt{6}}{5-\sqrt{6}}=a+b \sqrt{6}$

दी गई आकृति में $l \| \mathrm{m}$ और $\mathrm{p} \| \mathrm{q}$ है। x तथा y के मान ज्ञात कीजिए।
गुणनखंड कीजिए : $1000 x^{3}+1331 y^{3}+3300 x^{2} y+3630 y^{2} x$
Factorise : $1000 x^{3}+1331 y^{3}+3300 x^{2} y-3630 y^{2} x$
$\triangle \mathrm{ABC}$, में $\angle \mathrm{C}-\angle \mathrm{A}=40^{\circ}$ तथा $\angle \mathrm{C}-\angle \mathrm{B}=20^{\circ}$ है। $\angle \mathrm{A}, \angle \mathrm{B}$ व $\angle \mathrm{C}$ ज्ञात कीजिए।
In $\triangle A B C$, it is given that $\angle C-\angle A=40^{\circ}$ and $\angle C-\angle B=20^{\circ}$. Find $\angle A, \angle B$ and $\angle C$.

In the figure, find x and y if $l\|\mathrm{~m}, \mathrm{p}\| \mathrm{q}$.

दी गई आकृति में PQ तथा $R S$ दो दपर्ण हैं जो कि एक दूसरे के समान्तर हैं। एक आपतन किरण $A B$,दर्पण $P Q$ से 3 बिन्दु B पर टकराती है और परावर्तित किरण पथ BC पर बढ़ कर दपर्ण RS से C पर टकराती है तथा पुनः परावर्तित हो कर $C D$ के अनुदिश पथ पर जाती है। सिद्ध कीजिए $A B \| C D$ है।

http://jsuniltutorial.weebly.com/

In figure PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror PQ at B, the reflected ray moves along the path $B C$ and strikes the mirror RS at C and again reflects back along $C D$. Prove that $A B \| C D$.

सिद्ध कीजिए कि एक त्रिभुज के तीनों कोणों का योग 180° होता है।
Prove that the sum of three angles of a triangle is 180°.

यदि एक समचतुर्भज के दो विकर्णों की लंबाइयाँ 90 m और 400 m हैं, तो इस समचतुर्भुज की ऊँचाई और परिमाप 3 ज्ञात कीजिए।

If two diagonals of a rhombus are of lengths 90 m and 400 m , then find the height and perimeter of the rhombus.

कार्तीय तल में बिंदुओं $\mathrm{A}(1,6), \mathrm{B}(0,4), \mathrm{C}(7,0), \mathrm{D}(-2,-2), \mathrm{E}(4,-1), \mathrm{F}(2,-3), 3$
$\mathrm{G}(-1,1)$ और $\mathrm{H}(-2,-3)$ की स्थितियाँ निर्धारित कीजिए।

Locate the points $\mathrm{A}(1,6), \mathrm{B}(0,4), \quad \mathrm{C}(7,0), \quad \mathrm{D}(-2,-2), \quad \mathrm{E}(4,-1), \quad \mathrm{F}(2,-3)$, $G(-1,1)$ and $H(-2,-3)$ in the cartesian plane.

यदि $x=\frac{\sqrt{2}+1}{\sqrt{2}-1}$ और $y=\frac{\sqrt{2}-1}{\sqrt{2}+1}$ है, तो $x^{2}+y^{2}+x y$ का मान ज्ञात कीजिए। If $x=\frac{\sqrt{2}+1}{\sqrt{2}-1}$ and $y=\frac{\sqrt{2}-1}{\sqrt{2}+1}$, find the value of $x^{2}+y^{2}+x y$.

यदि $\mathrm{a}=\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}$ और $\mathrm{b}=\frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}$ है, तो $\frac{\mathrm{a}^{2}+\mathrm{ab}+\mathrm{b}^{2}}{\mathrm{a}^{2}-\mathrm{ab}+\mathrm{b}^{2}}$ का मान ज्ञात कीजिए।
If $a=\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}$ and $b=\frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}$, find the value of $\frac{a^{2}+a b+b^{2}}{a^{2}-a b+b^{2}}$.
p और q के मान ज्ञात कीजिए ताकि $x^{4}+\mathrm{p} x^{3}+2 x^{2}-3 x+\mathrm{q}$ के $(x+1)$ और $(x-1)$ गुणनखंड हो जाए।
Find the values of p and q so that $(x+1)$ and $(x-1)$ are factors of $x^{4}+p x^{3}+2 x^{2}-3 x+q$

उस आयत की लंबाई और चौड़ाई के लिए संभव व्यंजक दीजिए, जिसका क्षेत्रफल $25 a^{2}-35 a+12$ दिया गया है। Give possible expressions for the length and breadth of the rectangle, in which the area is given by : as $25 a^{2}-35 a+12$

यदि बहुपद $\mathrm{b}-x-10 x^{2}+8 x^{3}, 1-x$ से पूर्णतया विभाजित हो, तो b का मान ज्ञात कीजिए। इसका प्रयोग करते 4 हुए, बहुपद का गुणनखंडन कीजिए।

If the polynomial $\mathrm{b}-x-10 x^{2}+8 x^{3}$, is exactly divisible by $1-x$, then find value of b . Hence factorise the polynomial.

बहुपद $p(x)=x^{4}-2 x^{3}+3 x^{2}-a x+3 a-7$ को जब $(x+1)$ से भाग दिया जाता है, तो शेषफल 19 आता है। a ज्ञात 4 कीजिए। फिर शेषफल ज्ञात कीजिए जब $\mathrm{p}(x)$ को $x+2$ से भाग दिया जाता है।
The polynomial $p(x)=x^{4}-2 x^{3}+3 x^{2}-a x+3 a-7$ when divided by $(x+1)$ leaves the remainder 19. Find ' a '. Then, find the remainder when $p(x)$ is divided by $x+2$.

आकृति में $A B C D$ एक समांतर चतुर्भुज के आकार का प्लाट है। इस प्लाट का मालिक इसमें एक वृद्धाश्रम, एक 4

औषधालय, एक पार्क तथा एक स्वास्थ्य केंद्र बनाना चाहता है। विकर्ण $B D$ पर एक बिंदु P इस प्रकार है कि $D P=\frac{1}{2}$ DB तथा $\mathrm{PB}=\frac{1}{2} \mathrm{DB}$ है। DP तथा PB में क्या संबंध है ? यूक्लिड का कौन सा अभिगृहीत इसके उत्तर से संबंधित है ? प्लाट के मालिक द्वारा दर्शाए मूल्यों का वर्णन कीजिए।

In figure, a plot is in the form of a parallelogram ABCD. Owner of this plot wants to build OLD AGE HOME, DISPENSARY, PARK and HEALTH CENTRE for elderly people as shown in the fig. P is a point on the diagonal BD such that DP is half of $D B$ and $P B$ is also half of $D B$. What is the relation between DP and PB ? Which Euclid Axiom supports the answer ? State the value exhibited by the owner of plot.

$\Delta \mathrm{ABC}$ में $\angle \mathrm{B}$ और $\angle \mathrm{C}$ के आंतरिक समद्विभाजक BD और CD हैं। दर्शाइए कि $180^{\circ}+y=2 x$ है।

In $\triangle \mathrm{ABC}, \mathrm{BD}$ and CD are internal bisector of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ respectively. Prove that $180^{\circ}+y=2 x$.

30

त्रिभुज ABC की दो भुजाएं AB तथा BC और माध्यिका AM क्रमशः दूसरे त्रिभुज PQR की भुजाएं PQ तथा QR 4 और माध्यिका PN के समान हो, तो सिद्ध कीजिए
(i) $\quad \triangle \mathrm{ABM} \cong \triangle \mathrm{PQN}$
(ii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$

Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of a $\triangle \mathrm{PQR}$. Show that
(i) $\quad \triangle \mathrm{ABM} \cong \triangle \mathrm{PQN}$
(ii) $\quad \triangle A B C \cong \triangle P Q R$

सिद्ध कीजिए कि एक त्रिभुज की किन्हीं दो भुजाओं का योग उसकी तीसरी भुजा पर खींची गई माध्यिका के दुगुने से 4 भी बड़ा होता है।
Prove that any two sides of a triangle are together greater than twice the median drawn to the third side.

Marking Scheme

SUMMATIVE ASSESSMENT - I (2014-15)
 Mathematics (Class - IX)

General Instructions:

1. The Marking Scheme provides general guidelines to reduce subjectivity and maintain uniformity. The answers given in the marking scheme are the best suggested answers.
2. Marking be done as per the instructions provided in the marking scheme. (It should not be done according to one's own interpretation or any other consideration).
3. Alternative methods be accepted. Proportional marks be awarded.
4. If a question is attempted twice and the candidate has not crossed any answer, only first attempt be evaluated and 'EXTRA' be written with the second attempt.
5. In case where no answers are given or answers are found wrong in this Marking Scheme, correct answers may be found and used for valuation purpose.

खण्ड-अ / SECTION-A

प्रश्न संख्या 1 से 4 में प्रत्येक का 1 अंक है।
Question numbers 1 to 4 carry one mark each

1

$$
\begin{aligned}
& (81)^{0.16} \times(81)^{0.09}=(81)^{0.16+0.9}=(81)^{0.25}=(81)^{\frac{0.25}{1.00}} \\
& =(81)^{\frac{1}{4}}=\left(3^{4}\right)^{\frac{1}{4}}=3 \\
& (x-2)^{3}=x^{3}-8-6 x(x-2) \quad \text { Chas }
\end{aligned}
$$

$$
=x^{3}-6 x^{2}+12 x-8
$$

$(0,3)$
$\angle 1=\angle 2=110^{\circ}$ (alt. exterior angles)
$\angle 1+\angle 3=180^{\circ} \Rightarrow \angle 3=70^{\circ}$ (linear pair)

प्रश्न संख्या 5 से 10 में प्रत्येक का 2 अंक है।
Question numbers 5 to 10 carry two marks each.

5

$$
\begin{aligned}
& \frac{2}{\sqrt{5}-\sqrt{3}}=\frac{2}{\sqrt{5}-\sqrt{3}} \times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}} \\
& \Rightarrow \frac{2(\sqrt{5}+\sqrt{3})}{\sqrt{5^{2}}-\sqrt{3^{2}}}=\frac{2(\sqrt{5}+\sqrt{3})}{2}=\sqrt{5}+\sqrt{3}
\end{aligned}
$$

$\Rightarrow \angle \mathrm{ABC}=\angle \mathrm{DBC}$

Q When equals are added to equals, wholes are equal.
$\triangle \mathrm{AOC} \cong \triangle \mathrm{BOD}$ (SAS)
$\mathrm{AC}=\mathrm{BD}$ (cpct)

Third side $=\sqrt{(125)^{2}-(100)^{2}}=75$

Formula of area, $s=150$
Area of $\Delta=\sqrt{150 \times 25 \times 50 \times 75}=3750 \mathrm{~m}^{2}$

Drawing of square
vertices are $(0,0),(3,0),(3,3)$ and $(0,3)$

खण्ड-स / SECTION-C

प्रश्न संख्या 11 से 20 में प्रत्येक का 3 अंक है।
Question numbers $\mathbf{1 1}$ to $\mathbf{2 0}$ carry three marks each.

http://jsuniltutorial.weebly.com/

11

Draw a line $A B$ of length 4.2 cm . Produce $A B$ to a point $C 7 B C=1$. Find the midpoint of O of $A C$.
With centre O and radius OC draw a semicircle. Draw a line $\mathrm{BD} \perp \mathrm{AC}$ passing through B . Then BD $=\sqrt{4} .2$

12

$$
\begin{aligned}
& \frac{5+\sqrt{6}}{5-\sqrt{6}}=\frac{5+\sqrt{6}}{5-\sqrt{6}} \times \frac{5+\sqrt{6}}{5+\sqrt{6}} \\
& =\frac{(5+\sqrt{6})^{2}}{(5)^{2}-(\sqrt{6})^{2}} \\
& =\frac{25+6+10 \sqrt{6}}{25-6}
\end{aligned}
$$

$$
=\frac{31+10 \sqrt{6}}{19}
$$

$$
\Rightarrow \frac{5+\sqrt{6}}{5-\sqrt{6}}=\frac{31+10 \sqrt{6}}{19} \& \frac{5+\sqrt{6}}{5-\sqrt{6}}=a+b \sqrt{6}
$$

$$
\Rightarrow a+b \sqrt{6}=\frac{31}{19}+\frac{10}{19} \sqrt{6}
$$

On equating rationál and irrational parts,
We get
$a=\frac{31}{19}, b=\frac{10}{19}$

http://jsuniltutorial.weebly.com/

13
$x-2$ is a factor of $p(x)=2 x^{3}-9 x^{2}-2 x+24$

$$
\begin{aligned}
& \frac{p(x)}{x-2}=2 x^{2}-5 x-12 \\
& \begin{aligned}
2 x^{2}-5 x-12 & =2 x^{2}-8 x+3 x-12 \\
& =2 x(x-4)+3(x-4) \\
& =(2 x+3)(x-4)
\end{aligned}
\end{aligned}
$$

Other two zeroes are $-\frac{3}{2}, 4$.

$$
\begin{aligned}
\text { Given Exp }= & (10 x)^{3}+3(10 x)^{2}(11 y)+3(10 x)(11 y)^{2}+(11 y)^{3} \\
& =(10 x+11 y)^{3}
\end{aligned}
$$

We know that in any $\triangle \mathrm{ABC}$,
\qquad $1 / 2$
It is given that

$$
\begin{equation*}
\angle \mathrm{C}-\angle \mathrm{A}=40^{\circ} \tag{2}
\end{equation*}
$$

and $\angle \mathrm{C}-\angle \mathrm{B}=20^{\circ}$ \qquad
From (2), $\left.\angle \mathrm{A}=\angle \mathrm{C}-40^{\circ}\right\}$
From (3), $\left.\angle \mathrm{B}=\angle \mathrm{C}-20^{\circ}\right\}$ \qquad
Use (4) in (1) to get

$$
\angle C-40^{\circ}+\angle C-20^{\circ}+\angle C=180^{\circ} \quad \ldots \ldots \ldots \ldots \ldots \ldots . .1 / 2
$$

$$
\therefore \angle \mathrm{C}=80^{\circ}
$$

19
$\mathrm{AC}=400 \mathrm{~m}, \mathrm{BD}=90 \mathrm{~m}$
Area of rhombus $=\frac{1}{2} \times \mathrm{AC} \times \mathrm{BD}$

$$
=\frac{1}{2} \times 400 \times 90=18000 \mathrm{~m}^{2}
$$

$\mathrm{AB}=\sqrt{(\mathrm{OA})^{2}+(\mathrm{OB})^{2}}=\sqrt{(200)^{2}+(45)^{2}}=205 \mathrm{~m}$
Perimeter $=4 \times 205=820 \mathrm{~m}$
Height of rhombus $=\frac{18000}{205}=87.8 \mathrm{~m}$

Plotting of points

खण्ड-द / SECTION-D

प्रश्न संख्या 21 से 31 में प्रत्येक का 4 अंक है।
Question numbers $\mathbf{2 1}$ to $\mathbf{3 1}$ carry four marks each.

21

$$
\begin{aligned}
& x=\frac{\sqrt{2}+1}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1} \\
& =\frac{(\sqrt{2}+1)^{2}}{(\sqrt{2})^{2}-(1)^{2}} \\
& =\frac{2+1+2 \sqrt{2}}{1}=3+2 \sqrt{2} \\
& y=\frac{\sqrt{2}-1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1} \\
& = \\
& \quad \frac{(\sqrt{2}-1)^{2}}{(\sqrt{2})^{2}-1^{2}} \\
& =\frac{2+1-2 \sqrt{2}}{1}=3-2 \sqrt{2} \\
& x+y=6 ; x y=(3+2 \sqrt{2})(3-2 \sqrt{2}) \\
& =9-8=1
\end{aligned} \begin{aligned}
\therefore x^{2}+y^{2}+x y=(x+y)^{2}-x y \\
=6^{2}-1=36-1=35
\end{aligned}
$$

22

$$
\begin{aligned}
& a^{2}+a b+b^{2}=(a+b)^{2}=-a b \\
& a^{2}-a b+b^{2}=(a-b)^{2}+a b \\
& a+b=\frac{14}{3} \\
& a-b=\frac{4 \sqrt{10}}{3} \\
& a b=1 \\
& \therefore \frac{a^{2}+a b+b^{2}}{a^{2}-a b+b^{2}}=\frac{\left(\frac{14}{3}\right)^{2}-1}{\left(\frac{4 \sqrt{10}}{3}\right)^{2}+1} \\
& \quad=\frac{187}{169}
\end{aligned}
$$

Let $\mathrm{p}(x)=x^{4}+\mathrm{p} x^{3}+2 x^{2}-3 x+q$
$\because(x+1)$ and $(x-1)$ are factors of $p(x)$,
$p(-1)=0$ and $p(1)=0$
$\because(-1)^{4}+p(-1)^{3}+2(-1)^{2}-3 \times(-1)+q=0$
and $1^{4}+p(1)^{3}+2(1)^{2}-3(1)+q=0$
ie $1-p+2+3+q=0$ and $1+p+2-3+q=0$
$\therefore-p+q=-6 \& p+q=0$
(1)
(2)
$(1)+(2) \Rightarrow 2 q=-6$ or q $=-3$
From (2), $\mathrm{p}=-\mathrm{q}=3$
Hence $p=3 \& q=-3$
(i.e.) length \times breadth $=25 a^{2}-20 a-15 a+12$

$$
=5 a(5 a-4)-3(5 a-4)
$$

Length \times Breadth

$$
=(5 a-4)(5 a-3)
$$

\Rightarrow The possible dimensions of the rectangle are $(5 a-4)(5 a-3)$

$$
\mathrm{p}(x)=\mathrm{b}-x-10 x^{2}+8 x^{3}
$$

$\mathrm{p}(x)$ divisible by $1-x \Rightarrow \mathrm{p}(1)=0$
$p(1)=b-1-10+8=0 \Rightarrow b=3$
$p(x)=3-x-10 x^{2}+8 x^{3}$

http://jsuniltutorial.weebly.com/

$$
\begin{aligned}
& \frac{\mathrm{p}(x)}{1-x}=3+2 x-8 x^{2} \text { Chase } \\
& 3+2 x-8 x^{2}=(3-4 x)(1+2 x) \\
& \mathrm{p}(x)=(3-4 x)(1+2 x)(1-x)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{p}(x)=x^{4}-2 x^{3}+3 x^{2}-a x+3 a-7 \\
& p(-1)=19 \text { (given) } \\
& (-1)^{4}-2(-1)^{3}+3(-1)^{2}-a(-1)+3 a-7=19 \\
& 1+2+3+a+3 a-7=19 \\
& \\
& 4 a-1=19 \\
& \\
& 4 a=20 \\
& \\
& a=5
\end{aligned} \begin{aligned}
p(-2)= & (-2)^{4}-2(-2)^{3}+3(-2)^{2}-a(-2)+3 a-7 \\
= & 16+16+12+2 a+3 a-7 \\
= & 37+5 a \\
= & 37+5(5) \\
= & 37+25=62
\end{aligned}
$$

\therefore when $\mathrm{p}(x)$ is divided by $x+2$ the remainder is 62

Things half of same things are equal to one another.
Any Axiom

$$
\begin{aligned}
& \mathrm{AD}=\mathrm{BD} \\
& \Rightarrow \angle \mathrm{DAB}=\angle \mathrm{ABD}=59^{\circ} \\
& \text { (Angles opp. to equal sides are equal) } \\
& \text { In } \triangle \mathrm{ABD} \\
& 59^{\circ}+59^{\circ}+\angle \mathrm{ADB}=180^{\circ} \\
& \angle \mathrm{ADB}=180^{\circ}-118^{\circ}
\end{aligned}
$$

$=62^{\circ}$

$\angle \mathrm{ACD}=62^{\circ}-32^{\circ}=30^{\circ}$
(Exterior angle is equal to sum of interior opposite angles) 1
In $\triangle \mathrm{ABD}$
AB > BD
(Side opp. to greatest angle is longest)
Also in $\triangle \mathrm{ABC}, \mathrm{AB}<\mathrm{AC}$
$\Rightarrow \mathrm{BD}<\mathrm{AC}$ \qquad

In $\triangle \mathrm{BDC}$
$\angle \mathrm{DBC}+\angle \mathrm{DCB}+x=180^{\circ}$ \qquad
(Angle sum property of Δ)
$2 \angle \mathrm{DBC}+2 \angle \mathrm{DCB}+2 x=360^{\circ}$
. 1
$\angle \mathrm{B}+\angle \mathrm{C}+2 x=360^{\circ}$
Adding y on both sides
$y+\angle \mathrm{B}+\angle \mathrm{C}+2 x=360^{\circ}+y$
$180^{\circ}+2 x=360^{\circ}+y$
$2 x=180^{\circ}+y$
.

Correct fig.
.1
Here $A D$ is the median of $\triangle A B C$
Produce AD to E so that $\mathrm{AD}=\mathrm{DE}$ join CE
In $\triangle A B D$ and $\triangle C E D$

$$
\left.\begin{array}{l}
\mathrm{AD}=\mathrm{DE} \text { (construction) } \\
\mathrm{BD}=\mathrm{DC} \text { (Given) } \\
\angle \mathrm{ADB}=\angle \mathrm{CDE}(\text { vertically opposite angle) } \\
\therefore \Delta \mathrm{ABD} \cong \Delta \mathrm{EDC} \quad \quad \text { (SAS) } \\
\Rightarrow \mathrm{AB}=\mathrm{CE} \quad(\mathrm{c} \mathrm{p} \mathrm{c} \mathrm{t)} \\
\text { In } \triangle \mathrm{AEC}, \quad \mathrm{AC}+\mathrm{CE}>\mathrm{AE} \\
\\
\\
\\
\\
\mathrm{AC}+\mathrm{AB}>\mathrm{AE} \\
\mathrm{AC}+\mathrm{AB}>2 \mathrm{AD} \quad(\because \mathrm{CE}=\mathrm{AB}) \\
\end{array}\right\}
$$

http://jsuniltutorial.weebly.com/

