संकलित परीक्षा - I, 2014

SUMMATIVE ASSESSMENT - I, 2014
गणित/ MATHEMATICS
कक्षा - IX / Class - IX

निर्धारित समय:3 hours

Time Allowed: 3 hours

सामान्य निर्देश :

1. सभी प्रश्न अनिवार्य हैं।
2. इस प्रश्न पत्र में 31 प्रश्न हैं, जिन्हें चार खण्डों अ, ब, स तथा द में बांटा गया है। खण्ड-अ में 4 प्रश्न हैं जिनमें प्रत्येक 1 अंक का है; खण्ड-ब में 6 प्रश्न हैं जिनमें प्रत्येक के 2 अंक हैं; खण्ड-स में 10 प्रश्न हैं जिनमें प्रत्येक के 3 अंक हैं; तथा खण्ड-द में 11 प्रश्न हैं जिनमें प्रत्येक के 4 अंक हैं।
3. इस प्रश्न पत्र में कोई विकल्प नहीं है।
4. कैलकुलेटर का प्रयोग वर्जित है।

General Instructions:

1. All questions are compulsory.
2. The question paper consists of 31 questions divided into four sections A, B, C and D. Section-A comprises of 4 questions of 1 mark each; Section-B comprises of 6 questions of 2 marks each; Section-C comprises of 10 questions of 3 marks each and Section-D comprises of 11 questions of 4 marks each.
3. There is no overall choice in this question paper.
4. Use of calculator is not permitted.

खण्ड-अ / SECTION-A

प्रश्न संख्या 1 से 4 में प्रत्येक का 1 अंक है।
Question numbers 1 to $\mathbf{4}$ carry one mark each

1 $\frac{1}{\sqrt{7}-\sqrt{4}}$ का परिमेयीकरण गुणक लिखिए।

Write the rationalising factor of $\frac{1}{\sqrt{7}-\sqrt{4}}$.

In the figure, if $\angle A=40^{\circ}$ and $\angle B=70^{\circ}$, then find $\angle D C E$.

बिंदु P, x-अक्ष पर स्थित है तथा y-अक्ष से उसके बाईं ओर 4 इकाई की दूरी पर है। इस बिंदु P के निर्देशांक लिखिए। 1 Point P is on x-axis and is at a distance of 4 units from y-axis to its left. Write the coordinates of the point P .

खण्ड-ब / SECTION-B

प्रश्न संख्या 5 से 10 में प्रत्येक का 2 अंक है।
Question numbers $\mathbf{5}$ to $\mathbf{1 0}$ carry two marks each.

यदि $3 x+2 y=12$ और $x y=6$ है, तो $27 x^{3}+8 y^{3}$ का मान ज्ञात कीजिए। If $3 x+2 y=12$ and $x y=6$, then find $27 x^{3}+8 y^{3}$.

7 चित्र में यदि $\mathrm{AB}=\mathrm{CD}$ है, तो सिद्ध कीजिए $\mathrm{AC}=\mathrm{BD}$ है। यह यूक्लिड के किस अभिगृहीत के आधार पर है ? $\longleftrightarrow \stackrel{\bullet}{\mathrm{A}} \quad \stackrel{\bullet}{\mathrm{B}} \xrightarrow[\mathrm{D}]{\bullet}$

In figure if $A B=C D$, prove that $A C=B D$. State Euclid axiom, which is applicable here.

आकृति में, यदि $\angle \mathrm{ABD}=\angle \mathrm{ACE}$ है, तो सिद्ध कीजिए कि $\mathrm{AB}=\mathrm{AC}$ है ।

In the figure, if $\angle \mathrm{ABD}=\angle \mathrm{ACE}$, then prove that $\mathrm{AB}=\mathrm{AC}$.

एक समद्विबाहु त्रिभुज का क्षेत्रफल ज्ञात कीजिए, जिसका आधार 16 cm है और बराबर भुजाओं में से एक भुजा 102 cm है।

Find area of an isosceles triangle whose base is 16 cm and one of its equal sides is 10 cm .

बिंदुओं $\mathrm{A}(1,0), \mathrm{B}(4,0)$ और $\mathrm{C}(4,4)$ को आलेखित कीजिए। बिंदु D के ऐसे निर्देशांक ज्ञात कीजिए जिससे कि ABCD एक वर्ग हो जाए ।

Plot the points $\mathrm{A}(1,0), \mathrm{B}(4,0)$ and $\mathrm{C}(4,4)$. Find the co-ordinates of the point D such that ABCD is a square.

खण्ड-स / SECTION-C

प्रश्न संख्या 11 से 20 में प्रत्येक का $\mathbf{3}$ अंक है।
Question numbers $\mathbf{1 1}$ to $\mathbf{2 0}$ carry three marks each.

सरल कीजिए : $27^{\frac{1}{3}}\left[27^{\frac{1}{3}}-27^{\frac{2}{3}}\right\}$.
Simplify : $27^{\frac{1}{3}}\left[27^{\frac{1}{3}}-27^{\frac{2}{3}}\right]$.
x का मान ज्ञात कीजिए, यदि $\frac{2^{-1 / 3}}{32^{x}}=\frac{8^{x}}{2^{3}}$ है।
Find the value of x if $\frac{2^{-1 / 3}}{32^{x}}=\frac{8^{x}}{2^{3}}$.
दर्शाइए कि $x-3$, बहुपद $2 x^{3}-2 x^{2}-19 x-9$ का एक गुणनखंड है। इसका प्रयोग करते हुए बहुपद का गुणनखंडन 3 कीजिए।

Show that $x-3$ is a factor of the polynomial $2 x^{3}-2 x^{2}-19 x-9$. Hence factorise the polynomial.

ज्ञात कीजिए कि क्या $(x-2),(x+2)$ और $(2 x-3), 2 x^{3}-x^{2}-8 x+4$ के गुणनखंड हैं।
Find whether $(x-2),(x+2)$ and $(2 x-3)$ are factors of $2 x^{3}-x^{2}-8 x+4$.

15

16

आकृति में, यदि $l \| \mathrm{m}$ है तथा n एक तिर्यक रेखा इस प्रकार है कि $\angle 8: \angle 5=13: 5$ है, तो सभी कोण ज्ञात 3 कीजिए।

In the figure, if $l \| \mathrm{m}$ and n is a transversal such that $\angle 8: \angle 5=13 ; 5$, find all the angles.

दी गयी आकृति से दर्शाइए कि $X Y \mid E F$.

In given figure, show that $\mathrm{XY} \| \mathrm{EF}$.

एक समद्विबाहु त्रिभुज LMN में $\mathrm{LM}=\mathrm{LN} . \mathrm{MP}$ तथा NQ दो माध्यिकाएँ है। सिद्ध कीजिए कि $\mathrm{MP}=\mathrm{NQ}$.
In an Isosceles triangle LMN the sides $\mathrm{LM}=\mathrm{LN}$. MP and NQ are two medians of the triangle. Show that MP $=$ NQ.

संख्याओं के निम्नलिखित क्रमित युग्मों (x, y) को कार्तीय तल में बिंदुओं के रूप में आलेखित कीजिए :

x	0	-4.5	-1	2	-3	4
y	2.5	0	3	5	-2	-6

Plot the following ordered pairs (x, y) of numbers as points in the cartesian plane :

x	0	-4.5	-1	2	-3	4
y	2.5	0	3	y	5	-2

खण्ड-द / SECTION-D

प्रश्न संख्या 21 से 31 में प्रत्येक का 4 अंक है।
Question numbers 21 to 31 carry four marks each.

सरल कीजिए : $\frac{1}{2+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{6}}+\frac{1}{\sqrt{6}+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{8}}$

Simplify : $\frac{1}{2+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{6}}+\frac{1}{\sqrt{6}+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{8}}$.

22
यदि $\mathrm{a}=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ और $\mathrm{b}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$ है, तो $\mathrm{a}^{2}+\mathrm{b}^{2}-5 \mathrm{ab}$ का मान ज्ञात कीजिए।
If $a=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ and $b=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$, find the value of $a^{2}+b^{2}-5 a b$.

यदि $2 x+3 y=12$ और $x y=6$ हे, तो $8 x^{3}+27 y^{3}$ का मान ज्ञात कीजिए। If $2 x+3 y=12$ and $x y=6$, find the value of $8 x^{3}+27 y^{3}$.

यदि $z^{2}+\frac{1}{z^{2}}=11$ है, तो $z-\frac{1}{z}$ के कवल धनात्मक मान का प्रयोग करते हुए, $z^{3}-\frac{1}{z^{3}}$ का मान ज्ञात कीजिए।

If $z^{2}+\frac{1}{z^{2}}=11$, find the value of $z^{3}-\frac{1}{z^{3}}$, using only the positive value of $z-\frac{1}{z}$.

गुणनखंड कीजिए : $x^{3}-6 x^{2}+11 x-6$

Factorise : $x^{3}-6 x^{2}+11 x-6$

यदि $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ हो, तो सिद्ध कीजिए : $\frac{(\mathrm{b}+/ \mathrm{c})^{2}}{3 \mathrm{bc}}+\frac{(\mathrm{c}+\mathrm{a})^{2}}{3 \mathrm{ac}}+\frac{(\mathrm{a}+\mathrm{b})^{2}}{3 \mathrm{ab}}=1$
If $a+b+c=0$, then prove that $\frac{(b+c)^{2}}{3 b c}+\frac{(c+a)^{2}}{3 a c}+\frac{(a+b)^{2}}{3 a b}=1$

दी गई आकृति में गाड़ी खड़ी करने के स्थान पर खींची गई रेखाएँ दिखाई गई हैं ? यदि यह रेखाएँ समांतर हैं तो x तथा 4 w के मान ज्ञात कीजिए।

एक कालोनी के लोग काम पर जाते समय, मिलकर एक कार में जाने के बारे में सोचते हैं। ऐसा करने से वह किस मूल्य को दर्शा रहे हैं ?

This figure represents line segments painted on a parking lot to create parking spaces.

If these line segments are parallel find the value of x and w.
People in the colony are thinking to use car pool while going to their work place. What value are they showing by doing so ?

चतुर्भुज PQRS के विकर्ण PR तथा SQ परस्पर O पर मिलते हैं। सिद्ध कीजिए कि $\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}+\mathrm{SP}<4$ 2(PR+QS)
Diagonals PR and SQ of a quadrilateral PQRS meet at O . Próve that $\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}+\mathrm{SP}<$ 2(PR+QS)

चित्र में चतुर्भुज ABCD के कोणों $\angle \mathrm{A}$ तथा $\angle \mathrm{D}$ के समद्विभाजक क्रमशः AO तथा DO हैं। सिद्ध कीजिए 4 कि $\angle \mathrm{AOD}=\frac{1}{2}(\angle \mathrm{~B}+\angle \mathrm{C})$

In figure, AO and DO are the bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{D}$ respectively of the quadrilateral ABCD .
Prove that $\angle \mathrm{AOD}=\frac{1}{2}(\angle \mathrm{~B}+\angle \mathrm{C})$

आकृति में $\mathrm{AD}=\mathrm{BD}$ है। सिद्ध कीजिए कि $\mathrm{BD}<\mathrm{AC}$ है।

In the given figure $\mathrm{AD}=\mathrm{BD}$. Prove that $\mathrm{BD}<\mathrm{AC}$.

In figure $\mathrm{OA}=\mathrm{OB}, \mathrm{OC}=\mathrm{OD}$ and $\angle \mathrm{AOB}=\angle \mathrm{COD}$. Prove that $\mathrm{AC}=\mathrm{BD}$.

http://jsuniltutorial.weebly.com/

Marking Scheme

SUMMATIVE ASSESSMENT - I (2014-15)
 Mathematics (Class - IX)

General Instructions:

1. The Marking Scheme provides general guidelines to reduce subjectivity and maintain uniformity. The answers given in the marking scheme are the best suggested answers.
2. Marking be done as per the instructions provided in the marking scheme. (It should not be done according to one's own interpretation or any other consideration).
3. Alternative methods be accepted. Proportional marks be awarded.
4. If a question is attempted twice and the candidate has not crossed any answer, only first attempt be evaluated and 'EXTRA' be written with the second attempt.
5. In case where no answers are given or answers are found wrong in this Marking Scheme, correct answers may be found and used for valuation purpose
$\angle \mathrm{ACB}=180^{\circ}-\left(70^{\circ}+40^{\circ}\right)=70^{\circ}$

4
$(-4,0)$

खण्ड-ब / SECTION-B

प्रश्न संख्या 5 से 10 में प्रत्येक का 2 अंक है।
Question numbers $\mathbf{5}$ to $\mathbf{1 0}$ carry two marks each.

5

$$
\begin{aligned}
\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}} & =\frac{1}{\sqrt{3}+\sqrt{5}+\sqrt{2}} \times \frac{(\sqrt{3}+\sqrt{5})-\sqrt{2}}{\sqrt{3}+\sqrt{5}-\sqrt{2}} \\
& =\frac{\sqrt{3}+\sqrt{5}-\sqrt{2}}{(\sqrt{3}+\sqrt{5})^{2}-(\sqrt{2})^{2}} \\
& =\frac{\sqrt{3}+\sqrt{5}-\sqrt{2}}{3+5+2 \sqrt{15}-2} \\
& =\frac{\sqrt{3}+\sqrt{5}-\sqrt{2}}{6+2 \sqrt{15}} \\
& =\frac{\sqrt{3}+\sqrt{5}-\sqrt{2}}{6+2 \sqrt{15}} \times \frac{6-2 \sqrt{15}}{6-2 \sqrt{15}} \\
& =\frac{6 \sqrt{3}+6 \sqrt{5}-6 \sqrt{2}-6 \sqrt{5}-10 \sqrt{3}+2 \sqrt{30}}{36-60} \\
& =\frac{-4 \sqrt{3}-6 \sqrt{2}+2 \sqrt{30}}{-24} \\
& =\frac{2 \sqrt{3}+3 \sqrt{2}-\sqrt{30}}{12}
\end{aligned}
$$

6

7

$$
\begin{aligned}
& \mathrm{AC}=\mathrm{AB}+\mathrm{BC} \\
& \mathrm{BD}=\mathrm{BC}+\mathrm{CD}
\end{aligned}
$$

Given $A B=C D$
$B C$ is added to both side
$A B+B C=C D+B C$ \qquad $.1 / 2$
(If equals are added to equal, the resultant are equal) Euclid axiom. \qquad . 1
$\therefore \quad \mathrm{AC}=\mathrm{BD}$ \qquad $.1 / 2$
$\angle \mathrm{ABD}=\angle \mathrm{ACE}$
$180^{\circ}-\angle \mathrm{ABD}=180^{\circ}-\angle \mathrm{ACE}$
$\angle \mathrm{ABC}=\angle \mathrm{ACB}$
$\Rightarrow \mathrm{AC}=\mathrm{AB}$

9

$$
s=\frac{16+(10+10}{2}=\frac{36}{2}=18
$$

Formula of area
Area $=\sqrt{18 \times 2 \times 8 \times 8}=48 \mathrm{~cm}^{2}$

प्रश्न संख्या 11 से 20 में प्रत्येक का $\mathbf{3}$ अंक है। Question numbers $\mathbf{1 1}$ to $\mathbf{2 0}$ carry three marks each.

11

$$
\mathrm{p}(x)=2 x^{3}+x^{2}-18 x-9
$$

$$
\mathrm{p}(3)=54+9-54-9=0
$$

$$
\Rightarrow x-3 \text { is a factor of } \mathrm{p}(x)
$$

$$
\begin{aligned}
& \frac{\mathrm{p}(x)}{x-3}=2 x^{2}+7 x+3 \\
& 2 x^{2}+7 x+3=(2 x+1)(x+3) \\
& \mathrm{p}(x)=(2 x+1)(x+3)(x-3)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{p}(x)=2 x^{3}-x^{2}-8 x+4 \\
& \mathrm{p}(2)=16-4-16+4=0 \\
& \Rightarrow \quad x-2 \text { is a factor of } \mathrm{p}(x) \\
& \mathrm{p}(-2)=-16-4+16+4=0 \\
& \Rightarrow \quad x+2 \text { is a factor of } \mathrm{p}(x)
\end{aligned}
$$

$$
\mathrm{p}\left(\frac{3}{2}\right)=2 \frac{27}{8}-\frac{9}{4}-12+4 \neq 0
$$

$$
\Rightarrow \quad x-\frac{3}{2} \text { or } 2 x-3 \text { is not a factor of } p(x)
$$

Let $\angle 5=5 x, \angle 8=13 x$

$\left.\begin{array}{l}\angle 1=\angle 3=130^{\circ} \\ \angle 2=\angle 4=50^{\circ}\end{array}\right]$ (V.O.A)

16
In Fig. $\angle \mathrm{XYR}=\angle \mathrm{YRS}=66^{\circ}$
But these are int. alternate angles
$\therefore \mathrm{XY} \| \mathrm{RS}$. \qquad 1

Also $\angle \mathrm{FER}+\angle \mathrm{ERS}=180^{\circ}$
(Sum of interior angles on the same side of transversal)
$\therefore \mathrm{EF} \| \mathrm{RS}$
.................... 1
Since $X Y \| R S$

RS||EF

$\therefore \mathrm{XY} \| \mathrm{EF}$ \qquad

Here $\mathrm{LM}=\mathrm{LN}$ (Given)
As MP and QN are medians
$\therefore \mathrm{P}$ and Q are resp. mid points of LN and LM .
Proving $\triangle \mathrm{QMN} \cong \triangle \mathrm{PNM}$
2
Hence MP $=N Q$ (CPCT)

19

$\mathrm{AC}=\sqrt{9^{2}+(40)^{2}}=\sqrt{1681}=41 \mathrm{~m}$
Area $(\triangle \mathrm{ABC})=\frac{1}{2} \times 9 \times 40=180 \mathrm{~m}^{2}$
for $\triangle A C D$,
$\mathrm{s}=\frac{28+15+41}{2}=42 \mathrm{~m}$
Area $(\triangle \mathrm{ACD})=\sqrt{42 \times 14 \times 27 \times 1}$

$$
=126 \mathrm{~m}^{2}
$$

Area of quadrilateral $=180+126=306 \mathrm{~m}^{2}$

Drawing of axes

Plotting of points

खण्ड-द / SECTION-D

प्रश्न संख्या 21 से 31 में प्रत्येक का 4 अंक है।
Question numbers 21 to 31 carry four marks each.

$$
\begin{aligned}
& a=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} \times \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=\frac{(\sqrt{3}-\sqrt{2})^{2}}{(\sqrt{3})^{2}-(\sqrt{2})^{2}}=\frac{(\sqrt{3})^{2}-2 \cdot \sqrt{3} \cdot \sqrt{2}+(\sqrt{2})^{2}}{3-2} \\
& \therefore a=\frac{3-2 \sqrt{6}+2}{1}=5-2 \sqrt{6}
\end{aligned}
$$

sim ilarly $b=5+2 \sqrt{6}$

$$
\therefore a^{2}+b^{2}-5 a b=(5-2 \sqrt{6})^{2}+(5+2 \sqrt{6})^{2}-5(5-2 \sqrt{6})(5+2 \sqrt{6})
$$

$$
=25+24-20 \sqrt{6}+25+24+20 \sqrt{6}-5\left(5^{2}-(2 \sqrt{6})^{2}\right)
$$

$$
=98-5(25-24)
$$

$$
=98-5=93
$$

$$
\begin{aligned}
& (2 x+3 y)^{3}=(2 x)^{3}+(3 y)^{3}+3 \cdot 2 x \cdot 3 y(2 x+3 y) \\
& (2 x+3 y)^{3}=8 x^{3}+27 y^{3}+18 x y(2 x+3 y) \\
& 12^{3}=8 x^{3}+27 y^{3}+18 \cdot 6 \cdot 12 \\
& 1728=8 x^{3}+27 y^{3}+1296 \\
& \therefore 8 x^{3}+27 y^{3}=1728-1296
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{6}}+\frac{1}{\sqrt{6}+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{8}} \\
& =\frac{2-\sqrt{5}}{2^{2}-(\sqrt{5})^{2}}+\frac{\sqrt{5}-\sqrt{6}}{(\sqrt{5})^{2}-(\sqrt{6})^{2}}+\frac{\sqrt{6}-\sqrt{7}}{(\sqrt{6})^{2}-(\sqrt{7})^{2}}+\frac{\sqrt{7}-\sqrt{8}}{(\sqrt{7})^{2}-(\sqrt{8})^{2}} \\
& =\frac{2-\sqrt{5}}{4-5}+\frac{\sqrt{5}-\sqrt{6}}{5-6}+\frac{\sqrt{6}-\sqrt{7}}{6-7}+\frac{\sqrt{7}-\sqrt{8}}{7-8} \\
& =\frac{2-\sqrt{5}}{-1}+\frac{\sqrt{5}-\sqrt{6}}{-1}+\frac{\sqrt{6}-\sqrt{7}}{-1}+\frac{\sqrt{7}-\sqrt{8}}{-1} \\
& =\frac{2+\sqrt{5}-\sqrt{5}-\sqrt{6}+\sqrt{6}-\sqrt{7}+\sqrt{7}-\sqrt{8}}{-1} \\
& =\frac{2-\sqrt{8}}{-1} \\
& =-2+\sqrt{8} \text { or } \sqrt{8}-2
\end{aligned}
$$

24

$$
\begin{aligned}
& \left(z-\frac{1}{z}\right)^{2}=11-2=9 \Rightarrow z-\frac{1}{z}=3 \\
& \left(z-\frac{1}{z}\right)^{3}=z^{3}-\frac{1}{z^{3}}-3\left(z-\frac{1}{z}\right) \\
& 27=z^{3}-\frac{1}{z^{3}}-3(3) \\
& z^{3}-\frac{1}{z^{3}}=36
\end{aligned}
$$

$(x-1)$ is a factor.
$x^{3}-6 x^{2}+11 x-6=x^{3}-x^{2}-5 x^{2}+5 x+6 x-6$
$=(x-1)\left[x^{2}+5 x+6\right]$
$=(x-1)(x-2)(x-3)$

26

$$
\begin{array}{rlr}
\text { LHS } & =\frac{(b+c)^{2}}{3 b c}+\frac{(c+a)^{2}}{3 a c}+\frac{(a+b)^{2}}{3 a b} & \\
& =\frac{(-a)^{2}}{3 b c}+\frac{(-/ b)^{2}}{3 a c}+\frac{(-c)^{2}}{3 a b} & \\
& \therefore \quad b+c=-a \\
& =\frac{a^{3}+b^{3}+c^{3}}{3 a b c} &
\end{array} \begin{aligned}
& \text { and } \quad a+b=-c \\
& \\
&
\end{aligned} \begin{array}{ll}
3 a b c & \\
&
\end{array}
$$

In $\triangle \mathrm{AOD}$,
$\angle \mathrm{DAO}+\angle \mathrm{ADO}+\angle \mathrm{AOD}=180^{\circ}$
$\therefore \angle \mathrm{AOD}=180^{\circ}-(\angle \mathrm{DAO}+\angle \mathrm{ADO})$
http://jsuniltutorial.weebly.com/
$=180^{\circ}-\frac{1}{2}(\angle \mathrm{~A}+\angle \mathrm{D})$
In Quadrilateral ABCD,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ}$
$\angle \mathrm{B}+\angle \mathrm{C}=360^{\circ}-(\angle \mathrm{A}+\angle \mathrm{D})$
(ii)

From (i) and (ii)
$\angle \mathrm{AOD}=180^{\circ}-\frac{1}{2}\left[360^{\circ}-(\angle \mathrm{B}+\angle \mathrm{C})\right.$
$=\frac{1}{2}(\angle \mathrm{~B}+\angle \mathrm{C}) \ldots \ldots \ldots \ldots \ldots \ldots 1$
$\mathrm{AD}=\mathrm{BD}$
$\Rightarrow \angle \mathrm{DAB}=\angle \mathrm{ABD}=59^{\circ}$
(Angles opp. to equal sides are equal)
In $\triangle \mathrm{ABD}$
$59^{\circ}+59^{\circ}+\angle \mathrm{ADB}=180^{\circ}$
$\angle \mathrm{ADB}=180^{\circ}-118^{\circ}$
$=62^{\circ}$
. 1
$\angle \mathrm{ACD}=62^{\circ}-32^{\circ}=30^{\circ}$
(Exterior angle is equal to sum of interior opposite angles) 1
In $\triangle \mathrm{ABD}$
$A B>B D$
(Side opp. to greatest angle is longest)
Also in $\triangle \mathrm{ABC}, \mathrm{AB}<\mathrm{AC}$
$\Rightarrow \mathrm{BD}<\mathrm{AC}$

$$
\begin{aligned}
& \angle \mathrm{AOB}=\angle \mathrm{COD} \text { (given) } \\
& \angle \mathrm{AOC}+\angle \mathrm{COB}=\angle \mathrm{COB}+\angle \mathrm{BOD} \\
& \angle \mathrm{AOC}=\angle \mathrm{BOD} \\
& \text { In } \triangle \mathrm{AOC} \text { and } \triangle \mathrm{BOD} \\
& \mathrm{AO}=\mathrm{OB} \text { (given) } \\
& \mathrm{OC}=\mathrm{OD} \text { (given) } \\
& \angle \mathrm{AOC}=\angle \mathrm{BOD} \text { (proved above) } \\
& \therefore \triangle \mathrm{AOC} \cong \triangle \mathrm{BOD} \text { (SAS) }
\end{aligned}
$$

$$
\mathrm{AC}=\mathrm{BD}(\mathrm{cpct}) \quad \ldots \ldots \ldots \ldots \ldots \ldots . .1
$$

