JsuJll Turojisl ACBSE Coaching for 9 (athematics and Science

SUMMATIVE ASSESSMENT - I, with solution गणित/MATHEMATICS
 कक्षा - IX / Class - IX

निर्धारित समय : 3 घण्टे

अधिकतम अंक : 90
Time allowed : 3 hours
Maximum Marks : 90

सामान्य निर्देश :

(i) सभी प्रश्न अनिवार्य हैं।
(ii) इस प्रश्न पत्र में 34 प्रश्न हैं, जिन्हें चार खण्डों अ, ब, स तथा द में बांटा गया है। खण्ड-अ में 8 प्रश्न हैं जिनमें प्रत्येक 1 अंक का है; खण्ड-ब में 6 प्रश्न हैं जिनमें प्रत्येक के 2 अंक हैं; खण्ड-स में 10 प्रश्न हैं जिनमें प्रत्येक के 3 अंक है; तथा खण्ड-द में 10 प्रश्न हैं जिनमें प्रत्येक के 4 अंक हैं।
(iii) खण्ड-अ में प्रश्न संख्या 1 से 8 तक बहुविकल्पीय प्रश्न हैं जहां आपको चार विकल्पों में से एक सही विकल्प चुनना है।
(iv) इस प्रश्न पत्र में कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 2 अंकों व एक प्रश्न में, 3 अंकों के 3 प्रश्नों में और $\mathbf{4}$ अंकों के $\mathbf{2}$ प्रश्नों में दिए गए हैं। प्रत्येक प्रश्न में एक विकल्प का चयन करें।
(v) कैलकुलेटर का प्रयोग वर्जित है।

General Instructions:

(i) All questions are compulsory.
(ii) The question paper consists of 34 questions divided into four sections A, B, C and D. Section-A comprises of $\mathbf{8}$ questions of $\mathbf{1}$ mark each; Section-B comprises of $\mathbf{6}$ questions of $\mathbf{2}$ marks each; Section-C comprises of $\mathbf{1 0}$ questions of $\mathbf{3}$ marks each and Section-D comprises of $\mathbf{1 0}$ questions of $\mathbf{4}$ marks each.
(iii) Question numbers $\mathbf{1}$ to 8 in Section-A are multiple choice questions where you are required to select one correct option out of the given four.
(iv) There is no overall choice. However, internal choices have been provided in $\mathbf{1}$ question of two marks, $\mathbf{3}$ questions of three marks each and $\mathbf{2}$ questions of four marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculator is not permitted.

प्रश्न संख्या 1 से 8 में प्रत्येक का 1 अंक है। प्रत्येक प्रश्न में चार विकल्प दिए गए हैं, जिनमें से एक सही है। आपको सही विकल्प चुनना है।
Question numbers 1 to 8 carry one mark each. For each question, four alternative choices have been provided of which only one is correct. You have to select the correct choice.

1. 2 और 2.5 के बीच में अपरिमेय संख्या है :
(A) $\sqrt{7}$
(B) $\sqrt{5}$
(C) $\sqrt{8}$
(D) $\sqrt{6.5}$

An irrational number between 2 and 2.5 is :
(A) $\sqrt{7}$
(B) $\sqrt{5}$
(C) $\sqrt{8}$
(D) $\sqrt{6.5}$
2. अचर बहुपद है :
(A) $7 x$
(B) $7 x^{2}$
(C) $7 x^{3}$
(D) 7

Constant polynomial is :
(A) $7 x$
(B) $7 x^{2}$
(C) $7 x^{3}$
(D) 7
3. यदि बहुपद $2 x^{2}+\mathrm{k} x$ का एक गुणनखण्ड $x+1$ हो, तो k है :
(A) -2
(B) -3
(C) 4
(D) 2

If $x+1$ is a factor of the polynomial $2 x^{2}+\mathrm{k} x$ then k is :
(A) -2
(B) -3
(C) 4
(D) 2
4. $(x+1 / 3)^{3}$ का प्रसारित रूप है :
(A) $x^{3}-\frac{1}{27}-3 x^{2}+\frac{1}{3} x$
(B) $x^{3}+\frac{1}{27}+x^{2}+\frac{1}{3} x$
(C) $x^{3}+\frac{1}{27}+\frac{x^{2}}{3}+3 x$
(D) $x^{3}+\frac{1}{27}+3 x^{2}-\frac{1}{3} x$

The expanded form of $(x+1 / 3)^{3}$ is :
(A) $x^{3}-\frac{1}{27}-3 x^{2}+\frac{1}{3} x$
(B) $x^{3}+\frac{1}{27}+x^{2}+\frac{1}{3} x$
(C) $x^{3}+\frac{1}{27}+\frac{x^{2}}{3}+3 x$
(D) $x^{3}+\frac{1}{27}+3 x^{2}-\frac{1}{3} x$

JSUNLL TUTORIAL
Chase Excellence
5. यदि POQ एक सरल रेखा है और $\angle \mathrm{POR}=3 x^{\circ}, \angle \mathrm{QOR}=2 x^{\circ}+10^{\circ}$ है, तो x का मान ज्ञात कीजिए :
(A) 30°
(B) 34°
(C) 26°
(D) 36°

If $\angle \mathrm{POR}=3 x^{\circ}, \angle \mathrm{QOR}=2 x^{\circ}+10$ and POQ is a straight line, then the value of x is :
(A) 30°
(B) 34°
(C) 26°
(D) 36°
6. $\triangle \mathrm{PQR}$ में यदि $\mathrm{PQ}>\mathrm{QR}$ हो, तो :
(A) $\quad \angle \mathrm{R}>\angle \mathrm{P}$
(B) $\quad \angle \mathrm{P}=\angle \mathrm{R}$
(C) $\quad \angle \mathrm{Q}<\angle \mathrm{R}$
(D $\angle \mathrm{Q}=\angle \mathrm{R}$

In $\triangle \mathrm{PQR}$ if $\mathrm{PQ}>\mathrm{QR}$ then :
(A) $\quad \angle \mathrm{R}>\angle \mathrm{P}$
(B) $\quad \angle \mathrm{P}=\angle \mathrm{R}$
(C) $\angle \mathrm{Q}<\angle \mathrm{R}$
(D $\angle \mathrm{Q}=\angle \mathrm{R}$
7. बिन्दु $(0,-5)$ स्थित है :
(A) I चतुर्थांश में
(B) y-अक्ष पर
(C) III चतुर्थांश में
(D) x-अक्ष पर

Point $(0,-5)$ lies :
(A) in I quadrant
(B) on y-axis
(C) in III quadrant
(D) on x-axis
8. बिन्दु $(-3,-3)$ का x-अक्ष से दर्पण प्रतिबिम्ब है :
(A) $(3,0)$
(B) $(3,-3)$
(C) $(3,3)$
(D) $(-3,3)$

Image of point $(-3,-3)$ on x-axis is :
(A) $(3,0)$
(B)
$(3,-3)$
(C) $(3,3)$
(D) $(-3,3)$

खण्ड-ब/ SECTION-B
प्रश्न संख्या 9 से 14 में प्रत्येक के 2 अंक हैं।
Question numbers 9 to 14 carry two marks each.
9. सरल कीजिए $\sqrt{50}-\sqrt{98}+\sqrt{162}$

Simplify $\sqrt{50}-\sqrt{98}+\sqrt{162}$
10. गुणनखण्ड कीजिए $16 x^{3}-250 y^{3}$

Factorise $16 x^{3}-250 y^{3}$

11. वास्तव में घनों का परिकलन किए बिना, हल कीजिए :
$14^{3}+13^{3}-27^{3}$
Without actually calculating the cubes, evaluate.
$14^{3}+13^{3}-27^{3}$
12. चित्र में $\angle 1=\angle 2, \angle 3=\angle 4$ दिया गया है। दर्शाइए कि $\angle \mathrm{ABC}=\angle \mathrm{DBC}$ है। प्रयोग हुआ यूक्लिड

2

In the given figure, we have $\angle 1=\angle 2, \angle 3=\angle 4$. Show that $\angle \mathrm{ABC}=\angle \mathrm{DBC}$. State the Euclid axiom used.

JsMIN TILIOIML ACBSE Coaching for O(athematies and Science

13. चित्र में यदि $1_{1} \| 1_{2}$ और $l_{3} \| l_{4}$ हो, तो y का मान x के रूप में व्यक्त कीजिए।

In the given figure, if $1_{1} \mid 1_{2}$ and $1_{3} \| 1_{1}$, what is y in terms of x ?

अथवा/ OR
संद्ध कीजिए कि किसी त्रिभुज में कोणों का योग 180° होता है।
Prove that the sum of the angles of a triangle is 180°.
14. उस समबाहु त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसका परिमाप 60 cm है।

Find the area of an equilateral triangle whose perimeter is 60 cm .

खण्ड-स/ SECTION-C

प्रश्न संख्या 15 से 24 में प्रत्येक के 3 अंक हैं।
Question numbers 15 to 24 carry three marks each.
15.

यदि $p=\sqrt{2}-1$ है, तो $\left(p-\frac{1}{p}\right)^{3}$ का मान ज्ञात कीजिए।
If $p=\sqrt{2}-1$, then find the value of $\left(p-\frac{1}{p}\right)^{3}$.
अथवा/ OR
3
x ज्ञात कीजिए, जबकि $\left(\frac{2}{3}\right)^{3}\left(\frac{3}{2}\right)^{2 x}=\frac{81}{16}$
Find x if $\left(\frac{2}{3}\right)^{x}\left(\frac{3}{2}\right)^{2 x}=\frac{81}{16}$
16. मान ज्ञात कीजिए $\frac{4}{(216)^{-2 / 3}}-\frac{1}{(256)^{-3 / 4}}$

Find the value of $\frac{4}{(216)^{-2 / 3}}-\frac{1}{(256)^{-3 / 4}}$
17. यदि बहुपद $x^{6}-\mathrm{a} x^{5}+x^{4}-\mathrm{a} x^{3}+3 x-\mathrm{a}+2$ का एक गुणनखण्ड $x-\mathrm{a}$ है, तो a का मान ज्ञात

कीजिए।
Find the value of a for which x - a is a factor of the polynomial
$x^{6}-\mathrm{a} x^{5}+x^{4}-\mathrm{a} x^{3}+3 x-\mathrm{a}+2$.

अथवा/ OR

गुणनखण्ड कीजिए $3-12(a-b)^{2}$
Factorise $3-12(a-b)^{2}$
18. यदि $x^{2}+\frac{1}{x^{2}}=7$ हो, तो $x^{3}+\frac{1}{x^{3}}$ ज्ञात कीजिए।

If $x^{2}+\frac{1}{x^{2}}=7$, then find the value of $x^{3}+\frac{1}{x^{3}}$
19. चित्र में $\mathrm{AB} \| \mathrm{CD}$ और $\mathrm{CD} \| \mathrm{EF}$ है। यदि $\mathrm{EA} \perp \mathrm{AB}, \angle \mathrm{BEF}=65^{\circ}$ हो, तो x, y और z ज्ञात कीजिए।

In the given figure $A B \| C D$ and $C D \| E F$. Also $E A \perp A B$, and $\angle B E F=65^{\circ}$. Find the values of x, y and z.

अथवा/ OR
चित्र में $\mathrm{AB} \| \mathrm{CD}$ है। x का मान ज्ञात कीजिए।

In the given figure $A B \| C D$. Find x.

20. चित्र में $A B \| C D$ है। तथा $A D$ का मध्य-बिंदु O है। दर्शाइए कि $B C$ का भी मध्य-बिंदु O है।

In the given figure $A B \| C D$ and O is the mid-point of $A D$. Show that O is also mid-point of BC.

21. $\triangle \mathrm{ABC}$ की भुजाओं AB और AC के मध्य-बिंदु क्रमशः E और F हैं। दर्शाइए कि $\mathrm{BF}=\mathrm{CE}$ है।

E and F are mid-points of equal sides $A B$ and $A C$ of $\triangle A B C$ respectively. Show that $\mathrm{BF}=\mathrm{CE}$.

22. चित्र में $\mathrm{BA} \perp \mathrm{AC}$ और $\mathrm{DE} \perp \mathrm{EF}$ हैं। यदि $\mathrm{BA}=\mathrm{DE}$ और $\mathrm{BF}=\mathrm{DC}$ है, तो सिद्ध कीजिए कि $\mathrm{AC}=\mathrm{EF}$ हैं।

In the given figure $\mathrm{BA} \perp \mathrm{AC}$ and $\mathrm{DE} \perp E F$. If $\mathrm{BA}=\mathrm{DE}$ and $\mathrm{BF}=\mathrm{DC}$, then prove that $\mathrm{AC}=\mathrm{EF}$.

23. चित्र में $\angle \mathrm{CAD}$ का समद्विभाजक AE है और $\angle \mathrm{B}=\angle \mathrm{C}$ है। सिद्ध कीजिए कि $\mathrm{AE} \| \mathrm{BC}$ है ।

In the given figure AE bisects $\angle \mathrm{CAD}$ and $\angle \mathrm{B}=\angle \mathrm{C}$. Prove that $\mathrm{AE} \| \mathrm{BC}$.

Chase Excellence

Jsulit Tomion
 ACBSE Coaching for DGathematics and Science

24. एक त्रिभुज और समांतर चतुर्भुज का आधार और क्षेत्रफल समान हैं। यदि त्रिभुज की भुजाएँ 26 cm , 28 cm और 30 cm हैं तथा समांतर चतुर्भुज का आधार 28 cm है, तो समांतर चतुर्भुज का क्षेत्रफल ज्ञात कीजिए।
A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are $26 \mathrm{~cm}, 28 \mathrm{~cm}$ and 30 cm and the parallelogram stands on the base 28 cm . Find the height of the parallelogram.

खण्ड-द/ SECTION-D

प्रश्न संख्या 25 से 34 में प्रत्येक के 4 अंक हैं।

Question numbers 25 to 34 carry four marks each.
25. a और b का मान ज्ञात कीजिए, जबकि $\frac{5+2 \sqrt{3}}{7+4 \sqrt{3}}=\mathrm{a}+\mathrm{b} \sqrt{3}$

Find the values of a and b if $\frac{5+2 \sqrt{3}}{7+4 \sqrt{3}}=a+b \sqrt{3}$
अथवा/ OR
दर्शाइए कि $\frac{\left(x^{(\mathrm{a}+\mathrm{b})}\right)^{2}\left(x^{(\mathrm{b}+\mathrm{c})}\right)^{2}\left(x^{(\mathrm{c}+\mathrm{a})}\right)^{2}}{\left(x^{\mathrm{a}} x^{\mathrm{b}} x^{\mathrm{c}}\right)^{4}}=1$
Show that $\frac{\left(x^{(\mathrm{a}+\mathrm{b})}\right)^{2}\left(x^{(\mathrm{b}+\mathrm{c})}\right)^{2}\left(x^{(\mathrm{c}+\mathrm{a})}\right)^{2}}{\left(x^{\mathrm{a}} x^{\mathrm{b}} x^{\mathrm{c}}\right)^{4}}=1$
26. सरल कीजिए $\frac{1}{3+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{3}}+\frac{1}{\sqrt{3}+1}$

Simplify $\frac{1}{3+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{3}}+\frac{1}{\sqrt{3}+1}$
27. यदि बहुपदों $\mathrm{a} x^{3}+3 x^{2}-13$ और $2 x^{3}-5 x+\mathrm{a}$ को $x-2$ से भाग देने पर शेषफल समान हो, तो a का मान ज्ञात कीजिए।
The polynomials a $x^{3}+3 x^{2}-13$ and $2 x^{3}-5 x+$ a when divided by $x-2$ leave the same remainder, find the value of a.
28. सरल कीजिए $(2 x+3 y)^{3}+(2 x-3 y)^{3}$

Simplify $(2 x+3 y)^{3}+(2 x-3 y)^{3}$

Factorise $\left(a^{2}-2 a\right)^{2}-23\left(a^{2}-2 a\right)+120$
30. बिंदुओं $\mathrm{P}(2,4), \mathrm{Q}(4,2), \mathrm{R}(-2,2), \mathrm{S}(-3,4)$ को ग्राफ पेपर पर दिखाइए। उन्हें क्रम से मिलाइए और इस प्रकार बनी आकृति को पहचानिए।
Plot the points $\mathrm{P}(2,4), \mathrm{Q}(4,2), \mathrm{R}(-2,2), \mathrm{S}(-3,4)$ on the graph paper and join them in order and identify the figure so formed.
31. चित्र में सिद्ध कीजिए कि $x=\mathrm{a}+\mathrm{b}+\mathrm{c}$ है।

In the given figure prove that $x=\mathrm{a}+\mathrm{b}+\mathrm{c}$

32. समद्विबाहु त्रिभुज ABC में $\mathrm{AB}=\mathrm{AC}$ है तथा $\angle \mathrm{B}$ और $\angle \mathrm{C}$ के समद्विभाजक परस्पर O पर मिलते हैं।
A को O से मिलाइए। दर्शाइए कि
(i) $\mathrm{OB}=\mathrm{OC}$
(ii) $\angle \mathrm{A}$ का समद्विभाजक AO है।

ABC is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$, the bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ intersect each other at O . Join A to O . Show that (i) $\mathrm{OB}=\mathrm{OC}$ (ii) AO bisects $\angle \mathrm{A}$.

अथवा/ OR

त्रिभुज ABC में दी भुजाओं AC और AB पर खींचे गए लंब BE और CF समान हैं। दर्शाइए कि ABC एक समद्विबाहु त्रिभुज है।

$A B C$ is a triangle in which altitudes $B E$ and $C F$ to sides $A C$ and $A B$ are equal. Show that $A B C$ is an isosceles triangle.

JSUNLL TUTORIAL
Chase Excellence
33. चित्र में ABCD एक वर्ग है तथा $\triangle \mathrm{DEC}$ एक समबाहु त्रिभुज हैं। सिद्ध कीजिए कि
(i) $\triangle \mathrm{ADE} \cong \mathrm{BCE}$

(ii) $\mathrm{AE}=\mathrm{BE}$

In the given figure ABCD is a square. $\triangle \mathrm{DEC}$ is an equilateral triangle. Prove that (i) $\triangle \mathrm{ADE} \cong \mathrm{BCE}$
(ii) $\mathrm{AE}=\mathrm{BE}$

34. सिद्ध कीजिए कि समद्विबाहु त्रिभुज में समान भुजाओं के सम्मुख कोण समान होते हैं।

Prove that the angles opposite to equal sides of an isosceles triangle are equal.

JSUNIL TUTORIAL

SUMMATIVE ASSESSMENT - I

Answer sheet Paper-1

MATHEMATICS

Class - IX

General Instructions :

1. The Marking Scheme provides general guidelines to reduce subjectivity and maintain uniformity. The answers given in the marking scheme are the best suggested answers.
2. Marking be done as per the instructions provided in the marking scheme. (It should not be done according to one's own interpretation or any other consideration). Marking Scheme be strictly adhered to and religiously followed.
3. Alternative methods be accepted. Proportional marks be awarded.
4. If a question is attempted twice and the candidate has not crossed any answer, only first attempt be evaluated and 'EXTRA' written with second attempt.
5. In case where no answers are given or answers are found wrong in this Marking Scheme, correct answers may be found and used for valuation purpose.

SECTION - A

1. (B) 1
2. (D)
3. (D)

4. (B)1
5. (B)

JSUNIL TUTORIAL Chase Excellence
6. (A) -1
7. (B) 1
8. (D) 1
SECTION - B
9. $\sqrt{50}-\sqrt{98}+\sqrt{162}$

$$
\begin{array}{ll}
=\sqrt{5 \times 5 \times 2}-\sqrt{7 \times 7 \times 2}+\sqrt{3 \times 3 \times 3 \times 3 \times 2} & \mathbf{1} \\
=5 \sqrt{2}-7 \sqrt{2}+9 \sqrt{2} & 1 / 2 \\
=7 \sqrt{2} & 1 / 2
\end{array}
$$

10. $16 x^{3}-250 y^{3}$

$$
\begin{aligned}
& =2\left(8 x^{3}-125 y^{3}\right) \\
& =2(2 x-5 y)\left(4 x^{2}+10 x y+25 y^{2}\right)
\end{aligned}
$$

11. $\mathrm{a}+\mathrm{b}+\mathrm{c}=14+13-27=0$

$$
\begin{aligned}
& a^{3}+b^{3}+c^{3}=3 a b c \\
& 14^{3}+13^{3}+27^{3}=3 \times 14 \times 13 \times(-27) \\
& \\
& =-14742
\end{aligned}
$$

12. $\angle 1=\angle 2$

$$
\begin{equation*}
\angle 3=\angle 4 \tag{1}
\end{equation*}
$$

Adding (1) $+(2)$
$\angle 1+\angle 3=\angle 2+\angle 4$
$\angle \mathrm{ABC}=\angle \mathrm{DBC}$
Equals are added to equals, wholes are equal
13.

$x=\angle 1$ (corresponding angles)
$\angle 2=\angle 1$ (corresponding angles)
$\angle 2+2 y^{\circ}=180^{\circ}$
$2 y=180^{\circ}-x$
$y=90^{\circ}-1 / 2 x$

OR

Theorem sum of the angles of a triangle is 180°.
Correct figure, given, To prove, const.
Proof
14. Perimeter $=60 \mathrm{~cm}$

$$
\begin{array}{rlrl}
3 \mathrm{a} & =60 & & 1 / 2 \\
\mathrm{a} & =20 \mathrm{~cm} & & 1 / 2 \\
\text { Area } & =\frac{\sqrt{3}}{4} a^{2} & \\
& =\frac{\sqrt{3}}{4} \times 20 \times 20=100 \sqrt{3} \mathrm{~cm}^{2} & \mathbf{1}
\end{array}
$$

15. $\mathrm{p}=\sqrt{2}-1$

$$
\begin{gather*}
\frac{1}{\mathrm{p}}=\sqrt{2}+1 \tag{1}\\
\left(\mathrm{p}-\frac{1}{\mathrm{p}}\right)^{3}=(\sqrt{2}-1-\sqrt{2}-1)^{3} \\
=(-2)^{3}=-8 \\
\left(\frac{2}{3}\right)^{x} \cdot\left(\frac{3}{2}\right)^{2 x}=\frac{81}{16} \\
\frac{2^{x}}{3^{x}} \cdot \frac{3^{2 x}}{2^{2 x}}=\frac{3^{4}}{2^{4}} \\
\begin{array}{l}
2^{x-2 x} \cdot 3^{2 x^{-x}}=3^{4} \cdot 2^{-4} \\
x-2 x=-4 \quad 2 x-x=4 \\
x=4 \quad \therefore x=4
\end{array}
\end{gather*}
$$

OR

$\frac{4}{(216)^{-2 / 3}}-\frac{1}{(256)^{-3 / 4}}$
$\frac{4}{\left(6^{\not 又}\right)^{-2 / x}}-\frac{1}{\left(4^{4}\right)^{-3 / 4}}$
$4 \times 6^{2}-4^{3}$
$144-64=80$

$$
144-64=80
$$

17. $\mathrm{p}(x)=x^{6}-\mathrm{a} x^{5}+x^{4}-\mathrm{a} x^{3}+3 x-\mathrm{a}+2$

$$
\begin{array}{rlr}
& 1 / 2 \\
\mathrm{p}(\mathrm{a}) & =0 & \\
\mathrm{p}(\mathrm{a}) & =\mathrm{a}^{6}-\mathrm{a}(\mathrm{a})^{5}+\mathrm{a}^{4}-\mathrm{a}(\mathrm{a})^{3}+3(\mathrm{a})-\mathrm{a}+2=0 & \\
& =\not \AA^{6}-\not \AA^{6}+\not \AA^{4}-\not \AA^{4}+2 \mathrm{a}+2=0 & 1 \\
2 \mathrm{a} & =-2 & 1 / 2 \\
\mathrm{a} & =-1 & 1 / 2
\end{array}
$$

OR

$$
\begin{aligned}
& 3-12(a-b)^{2} \\
& =3\left(1-4(a-b)^{2}\right) \\
& =3\left(1^{2}-(2(a-b))^{2}\right) \\
& =3(1+2(a-b))(1-2(a-b)) \\
& =3(1+2 a-2 b)(1-2 a+2 b)
\end{aligned}
$$

18. $x^{2}+\frac{1}{x^{2}}=7$

$$
\begin{array}{ll}
\left(x+\frac{1}{x}\right)^{2}=x^{2}+\frac{1}{x^{2}}+2 & \text { JSUNIL TUTORIALL } \\
=7+2 & \text { Chase Excellence }
\end{array}
$$

$$
\begin{aligned}
& =7+2 \\
& x+\frac{1}{x}= \pm 3
\end{aligned}
$$

$x+\frac{1}{x}=3$	$x+\frac{1}{x}=-3$

$\left(x+\frac{1}{x}\right)^{3}=x^{3}+\frac{1}{x^{3}}+3\left(x+\frac{1}{x}\right)$
$3^{3}=x^{3}+\frac{1}{x^{3}}+9$
$x^{3}+\frac{1}{x^{3}}=18$
Or $(-3)^{3}=x^{3}+\frac{1}{x^{3}}+3(-3)$
$-27+9=x^{3}+\frac{1}{x^{3}}$
$-18=x^{3}+\frac{1}{x^{3}}$
19. $y+65^{\circ}=180^{\circ}$ (Interior angles on the same side of transversal)
$y=115^{\circ}$
$y=x=115^{\circ}$ Corresponding angles.
$z+90^{\circ}+65=180^{\circ}$ (Angles on the same side of the transversal)
$z=25^{\circ}$

OR

Diagram and Const : Draw 1||AB
$\angle 1+112^{\circ}=180^{\circ}$
1
$\angle 1=68^{\circ}$
$x+\angle 1=112^{\circ}$ (Alternate angles)
$x+68^{\circ}=112^{\circ}$
$x=44^{\circ}$
20.

Proof : In $\triangle A O B$ and $\triangle D O C$
$\mathrm{OA}=\mathrm{OD}$ given
$\angle 1=\angle 2$ (Alternate angles)
$\angle 3=\angle 4$ V.O.A
$\therefore \triangle \mathrm{AOB} \cong \triangle \mathrm{DOC}$ by ASA cong.
$\mathrm{OB}=\mathrm{OC}$ by c.p.c.t
$\therefore \mathrm{O}$ is also mid-point of BC
21.

Figure :
Proof : In $\triangle A B F$ and $\triangle A C E$
$\mathrm{AB}=\mathrm{AC}$ given
$\angle \mathrm{A}=\angle \mathrm{A}$ (common)
$\mathrm{AF}=\mathrm{AE}$ (given)
$\therefore \triangle \mathrm{ABF} \cong \triangle \mathrm{ACE}$ by SAS cong.
\therefore By c.p.c.t $\mathrm{BF}=\mathrm{CE}$
22.

Proof:
$\mathrm{BF}=\mathrm{CD}$
Adding FC to both sides
$\mathrm{BF}+\mathrm{FC}=\mathrm{CD}+\mathrm{FC}$
$\mathrm{BC}=\mathrm{DF}$
In $\triangle A B C$ and $\triangle E D F$
$A B=E D$ given
$\angle \mathrm{A}=\angle \mathrm{E}=90^{\circ}$
$\mathrm{BC}=\mathrm{DF}$ proved
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{EDF}$ by RHS cong. $\quad 11 / 2$
$\therefore \mathrm{AC}=\mathrm{EF}$ by c.p.c.t
23.

Proof:
$\angle 1=\angle 2 \quad 1 / 2$
$\angle \mathrm{B}=\angle \mathrm{C}$
In $\triangle \mathrm{ABC}$
$\angle \mathrm{B}+\angle \mathrm{C}=\angle 1+\angle 2$
$2 \angle \mathrm{C}=2 \angle 2$
$\angle \mathrm{C}=\angle 2$ Alternate angles
$\therefore \mathrm{AE} \| \mathrm{BC}$
24. Triangle

$$
\begin{aligned}
& \mathrm{A}=\frac{26+28+30}{2}=\frac{84}{2}=42 \mathrm{~cm} \\
& \begin{aligned}
& \mathrm{s}=\sqrt{\mathrm{s}(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})} \\
&=\sqrt{42 \times 16 \times 14 \times 12}=\sqrt{14 \times 3 \times 16 \times 14 \times 4 \times 3} \\
&=14 \times 4 \times 2 \times 3 \\
&=336 \mathrm{~cm}^{2}
\end{aligned}
\end{aligned}
$$

A of parallelogram = Aera of triangle

$$
\begin{aligned}
\mathrm{b} \times \mathrm{h} & =336 \\
28 \times \mathrm{h} & =336 \\
\mathrm{~h} & =12 \mathrm{~cm}
\end{aligned}
$$

SECTION - D

25. $\frac{5+2 \sqrt{3}}{7+4 \sqrt{3}} \times \frac{7-4 \sqrt{3}}{7-4 \sqrt{3}}$

$$
\begin{align*}
& =\frac{35-20 \sqrt{3}+14 \sqrt{3}-(8 \times 3)}{49-48} \tag{1}\\
& =11-6 \sqrt{3}=a+b \sqrt{3} \\
& a=11 \quad b=-6
\end{align*}
$$

OR

$\frac{\left(x^{(\mathrm{a}+\mathrm{b})}\right)^{2}\left(x^{(\mathrm{b}+\mathrm{c})}\right)^{2}\left(x^{(\mathrm{c}+\mathrm{a})}\right)^{2}}{\left(x^{\mathrm{a}} x^{\mathrm{b}} x^{\mathrm{c}}\right)^{4}}=\frac{x^{2 \mathrm{a}+2 \mathrm{~b}} x^{2 \mathrm{~b}+2 \mathrm{c}} x^{2 \mathrm{c}+2 \mathrm{a}}}{x^{4 \mathrm{a}} x^{4 \mathrm{~b}} x^{4 \mathrm{c}}}$

$$
\begin{aligned}
& =\frac{x^{4 a+4 b+4 c}}{x^{4 a+4 b+4 c}} \\
& =1
\end{aligned}
$$

26.

$$
\begin{aligned}
& \frac{1(3-\sqrt{7})}{(3+\sqrt{7})(3-\sqrt{7})}+\frac{1(\sqrt{7}-\sqrt{5})}{(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})}+\frac{1(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})} \\
& +\frac{1(\sqrt{3}-1)}{(\sqrt{3}+1)(3-1)} \text { Conjugate } \\
& =\frac{3-\sqrt{7}}{9-7}+\frac{\sqrt{7}-\sqrt{5}}{7-5}+\frac{\sqrt{5}-\sqrt{3}}{5-3}+\frac{\sqrt{3}-1}{2} \\
& =\frac{3-\not 77}{7-7-\not \sqrt{5}+\not \sqrt{5}-\sqrt{3}+\sqrt{3}-1} \\
& 2
\end{aligned} \frac{1}{2}=1 \quad 2 \quad 1 / 2+1 / 2 .
$$

27. $\mathrm{p}(x)=\mathrm{a} x^{3}+3 x^{2}-13$

$$
\mathrm{R}_{1}=(2)
$$

$$
\mathrm{p}(2)=\mathrm{a}(2)^{3}+3(2)^{2}-13
$$

$$
\begin{aligned}
& \mathrm{g}(x)=2 x^{3}-5 x+\mathrm{a} \\
& \mathrm{R}_{2}=\mathrm{g}(2) \\
& \mathrm{R}_{2}=2(2)^{3}-5(2)+\mathrm{a}
\end{aligned}
$$

$$
\left.\begin{array}{rr}
\mathrm{R}_{1} & =8 \mathrm{a}+12-13 \\
& =8 \mathrm{a}-1 \\
\mathrm{R}_{1} & =\mathrm{R}_{2} \\
8 \mathrm{a} & -1=6+\mathrm{a} \\
7 \mathrm{a}=7 & \begin{array}{r}
=16-10+\mathrm{a}
\end{array} \\
\mathrm{a}=1 & \mathrm{R}_{2}=6+\mathrm{a}
\end{array}\right)
$$

$$
1 / 2
$$

28. $(2 x+3 y)^{3}=8 x^{3}+27 y^{3}+36 x^{2} y+54 x y^{2}$

$$
(2 x-3 y)^{3}=8 x^{3}-27 y^{3}-36 x^{2} y+54 x y^{2}
$$

$$
(2 x+3 y)^{3}+(2 x-3 y)^{3}=16 x^{3}+108 x y^{2}
$$

29. $\left(a^{2}-2 a\right)^{2}-23\left(a^{2}-2 a\right)+120$

Let $a^{2}-2 a=p$
$p^{2}-23 p+120$
$=(p-15)(p-8)$
$=\left(a^{2}-2 a-15\right)\left(a^{2}-2 a-8\right)$
$=(\mathrm{a}-5)(\mathrm{a}+3)(\mathrm{a}-4)(\mathrm{a}+2)$
30. Plotting the points

Figure - Trapezium
31.

Diagram and const.
In $\triangle \mathrm{AOB}$
$\angle 1=\angle 3+b$
In $\triangle \mathrm{AOC}$
$\angle 2=\angle 4+\mathrm{c}$
$\angle 1+\angle 2=\mathrm{b}+\mathrm{c}+\angle 3+\angle 4$
$x=\mathrm{b}+\mathrm{c}+\mathrm{a}$
32.

Diagram
(i) In $\triangle \mathrm{ABC}$

$$
\mathrm{AB}=\mathrm{AC}
$$

$$
\begin{aligned}
& \angle \mathrm{B}=\angle \mathrm{C} \\
& \frac{1}{2} \angle \mathrm{~B}=\frac{1}{2} \angle \mathrm{C} \\
& \angle 1=\angle 2
\end{aligned}
$$

$$
\mathrm{OC}=\mathrm{OB} \quad \text { (sides opposite to equal sides) }
$$

In $\triangle \mathrm{ABO}$ and ACO
$A B=A C$ given
$\mathrm{AO}=\mathrm{AO}$ common
$\mathrm{OB}=\mathrm{OC}$ proved
$\therefore \Delta \mathrm{ABO} \cong \Delta \mathrm{ACO}$ by SSS cong.
$\therefore \angle \mathrm{BAO}=\angle \mathrm{CAO}$ by c.p.c.t
AO bisects $\angle \mathrm{A}$

OR

In $\triangle \mathrm{ABE}$ and ACF
$\angle \mathrm{A}=\angle \mathrm{A}$ (common)
$\angle \mathrm{AEB}=\angle \mathrm{AFC}=90^{\circ}$
$\mathrm{BE}=\mathrm{CF}$ (given)
$\therefore \Delta \mathrm{ABE} \cong \triangle \mathrm{ACF}$ by AAS cong.
\therefore By c.p.c.t $\mathrm{AB}=\mathrm{AC}$
In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}$
$A B C$ is an isosceles triangle
33.

In $\triangle \mathrm{ADE}$
$\angle 1=90^{\circ}+60^{\circ}=150^{\circ}$ (Angles of square and equilateral triangle)
In $\triangle \mathrm{BCE}$
$\angle 2=150^{\circ}$
$\therefore \angle 1=\angle 2$
In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{BCE}$
$\mathrm{AD}=\mathrm{BC}$ (sides of square)
$\mathrm{DE}=\mathrm{CE}$ (sides of equilateral triangle)
$\angle 1=\angle 2$ proved
$\therefore \triangle \mathrm{ADE} \cong \triangle \mathrm{BCE}$ by SAS cong.
By c.p.c.t

$\mathrm{AE}=\mathrm{BE}$

34. Correct figure, given, to prove, construction

- o Oo -

