#### V15PCAF

### संकलित परीक्षा - I, 2013 SUMMATIVE ASSESSMENT - I, 2013 गणित/MATHEMATICS कक्षा - IX/Class - IX

निर्धारित समय : 3 घण्टे

अधिकतम अंक : 90

Time Allowed : 3 hours

Maximum Marks : 90

सामान्य निर्देश :

**General Instructions:** 

सभी प्रश्न **अनिवार्य** हैं। All questions are **compulsory**.

इस प्रश्न पत्र में 31 प्रश्न हैं, जिन्हें **चार खण्डों अ, ब, स** तथा द में बांटा गया है। खण्ड-अ में 4 प्रश्न हैं जिनमें प्रत्येक 1 अंक का है; खण्ड-ब में 6 प्रश्न हैं जिनमें प्रत्येक के 2 अंक हैं; खण्ड-स में 10 प्रश्न हैं जिनमें प्रत्येक के 3 अंक है; तथा खण्ड-द में 11 प्रश्न हैं जिनमें प्रत्येक के 4 अंक हैं।

The question paper consists of 31 questions divided into four sections A, B, C and D. Section-A comprises of 4 questions of 1 mark each; Section-B comprises of 6 questions of 2 marks each; Section-C comprises of 10 questions of 3 marks each and Section-D comprises of 11 questions of 4 marks each.

इस प्रश्न पत्र में कोई विकल्प नहीं है। There is no overall choice in this question paper

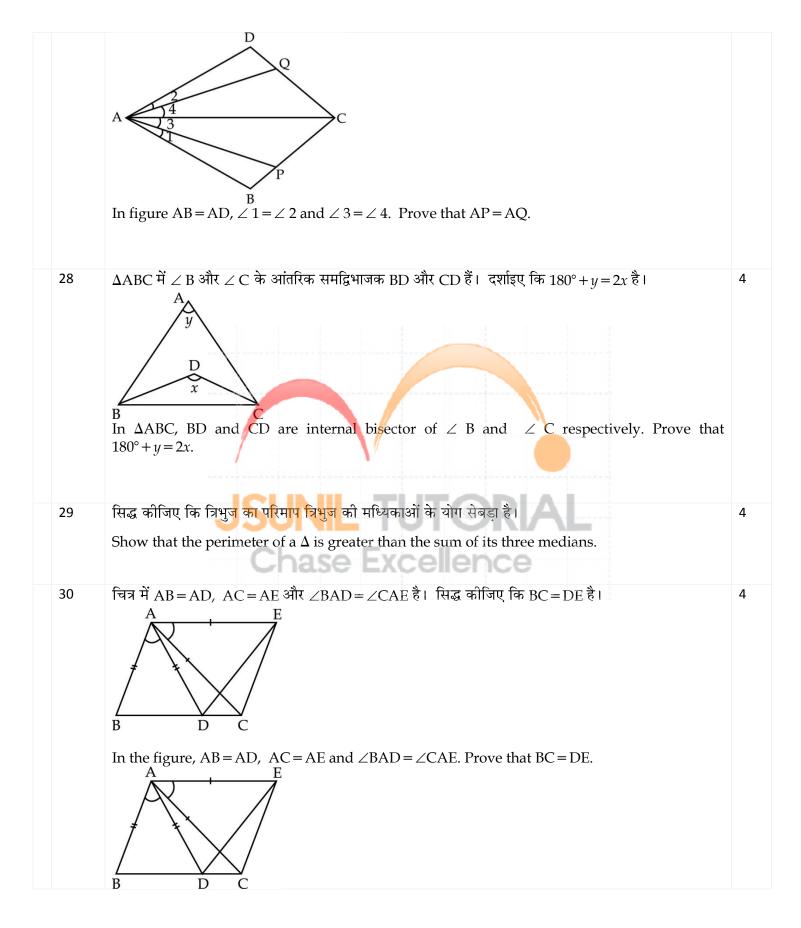
कैलकुलेटर का प्रयोग वर्जित है। Use of calculator is not permitted.

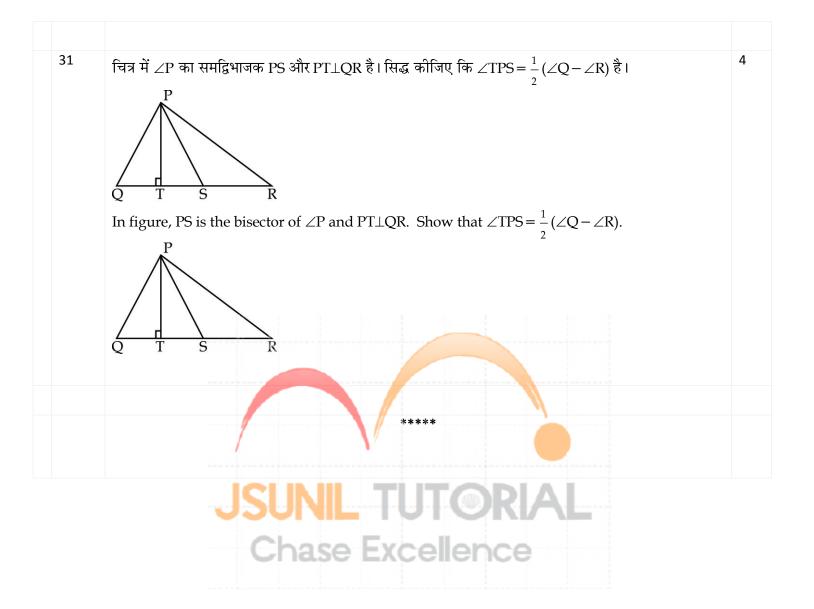
#### खण्ड-अ / SECTION - A

प्रश्न संख्या 1 से 4 तक प्रत्येक प्रश्न 1 अंक का है। Question numbers 1 to 4 carry 1 mark each.

<sup>3</sup>-का दशमलव रूप ज्ञात कीजिए।

1


|   | Find the decimal expansion of $\frac{3}{7}$ .                                                                                                                                             |   |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2 | यदि $p(x) = x^2 - 2\sqrt{2} x + 1$ हो, तो $p(2\sqrt{2})$ ज्ञात कीजिए।<br>If $p(x) = x^2 - 2\sqrt{2} x + 1$ , then find the value of $p(2\sqrt{2})$ .                                      | 1 |
| 3 | चित्र में AB  CD है। x का मान ज्ञात कीजिए।<br>$A$ $B$ $120^{\circ}$ $x$ $E$ $140^{\circ}$ $D$ In the figure AB  CD. Find the value of x.                                                  | 1 |
| 4 | निर्देशांक अक्ष, तल को कितने भागों में बाँटते हैं ?<br>The co-ordinate axes divide the plane into how many parts ?                                                                        | 1 |
|   | खण्ड-ब/SECTION - B<br>प्रश्न संख्या 5 से 10 तक प्रत्येक प्रश्न 2 अंक का है।                                                                                                               |   |
|   | Question numbers 5 to 10 carry 2 marks each.                                                                                                                                              |   |
| 5 | मान निकालिए : $\sqrt[3]{512^{-2}}$<br>Evaluate : $\sqrt[3]{512^{-2}}$                                                                                                                     | 2 |
| 6 | जॉॅंच कीजिए कि क्या बहुपद q(t) = $4t^3 + 4t^2 - t - 1$ , $2t + 1$ से पूर्णतया विभाजित होता है।<br>Check if the polynomial q(t) = $4t^3 + 4t^2 - t - 1$ is exactly divisible by $2t + 1$ . | 2 |
| 7 | सिद्ध कीजिए कि दो भिन्न रेखाओं में एक से अधिक बिन्दु उभयनिष्ठ नहीं हो सकता।<br>Prove that "Two distinct lines cannot have more than one point in common".                                 | 2 |
| 8 | दो प्रतिच्छेदी वृत्तों के केन्द्र बिंदु P और Q हैं। सिद्ध कीजिए कि PQ=QR=PR है।                                                                                                           | 2 |


|    | P and Q are the centres of two intersecting circles. Prove that PQ=QR=PR.                                                                                                                                                                                                          |   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 9  | एक समचतुर्भुज का क्षेत्रफल ज्ञात कीजिए, जबकि इसकी एक भुजा 20 m और एक विकर्ण<br>24 m है।<br>Find the area of a rhombus whose one side is 20 m and one diagonal is<br>24 m.                                                                                                          | 2 |
| 10 | त्रिभुज का क्षेत्रफल ज्ञात कोजिए जबकि उसकी भुजाएँ 35 cm, 54 cm और 61 cm हैं।<br>Find the area of the triangle with sides 35 cm, 54 cm and 61 cm.<br>खण्ड-स/SECTION - C<br>प्रश्न संख्या 11 से 20 तक प्रत्येक प्रश्न 3 अंक का हैं।<br>Question numbers 11 to 20 carry 3 marks each. | 2 |
| 11 | मान लीजिए कि a और b क्रमश: परिमेय और अपरिमेय संख्याएँ हैं। क्या a+b एक अपरिमेय संख्या है? अपने<br>उत्तर का औचित्य दीजिए।<br>Let a and b be rational and irrational numbers respectively. Is a+b an irrational number ?<br>Justify your answer.                                     | 3 |
| 12 | $4.0\overline{35}$ को $\frac{p}{q}$ के रूप में व्यक्त कीजिए जबकि p और q पूर्णांक हैं तथा q ≠ 0 है।<br>Express $4.0\overline{35}$ in the form of $\frac{p}{q}$ where p and q are integers and q ≠ 0.                                                                                | 3 |
| 13 | यदि $x + y + z = 0$ है, तो दर्शाइए कि $x^3 + y^3 + z^3 = 3xyz$ है।<br>If $x + y + z = 0$ , show that $x^3 + y^3 + z^3 = 3xyz$ .                                                                                                                                                    | 3 |

| 14 | यदि $a - b = 7$ और $a^2 + b^2 = 85$ है, तो $a^3 - b^3$ ज्ञात कीजिए।<br>If $a - b = 7$ and $a^2 + b^2 = 85$ , find $a^3 - b^3$ .                                                                                                                                                                                      | 3 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 15 | $\Delta ABC$ में यदि AC पर बिंदु D इस प्रकार है कि AD = CD = BD है, तो सिद्ध कीजिए कि $\Delta ABC$ एक समकोण<br>त्रिभुज है।<br>In $\Delta$ ABC, if D is a point on AC such that AD = CD = BD, then prove that $\Delta$ ABC is a right<br>angles triangle.                                                             | 3 |
| 16 | दी गई आकृति में PR > PQ तथा PS,∠QPR को समद्विभाजित करता है। सिद्ध कीजिए<br>∠PSR >∠PSQ है।<br>Q S R<br>In the given figure PR > PQ and PS bisects ∠QPR. Prove that ∠PSR >∠PSQ<br>Q S R<br>SUNL TUTORIAL                                                                                                               | 3 |
| 17 | एक तिर्यक रेखा दो रेखाओं को काटती है। इस प्रकार बने अन्त: एकान्तर कोणों के समद्विभाजक यदि परस्पर<br>समान्तर हों तो सिद्ध कीजिए कि रेखाएं समान्तर हैं।<br>If the bisectors of a pair of alternate angles formed by a transversal with two given lines are<br>parallel, prove that the given lines are parallel.       | 3 |
| 18 | चित्र में ABCD एक चतुर्भुज है जिसमें AB=AD और∠A का समद्विभाजक AC है। दर्शाइए कि $\Delta$ ABC $\cong \Delta$ ADC और BC = DC है।<br>$A \longrightarrow C$ B → C In the figure, ABCD is a quadrilateral such that AB = AD and AC is the bisector of the angle A. Show that $\Delta$ ABC $\cong \Delta$ ADC and BC = DC. | 3 |

एक समद्विबाह त्रिभुज का आधार 24 cm है और क्षेत्रफल 60 cm² है। इसका परिमाप ज्ञात कीजिए। 19 3 The base of an isosceles triangle measures 24 cm and its area is  $60 \text{ cm}^2$ . Find its perimeter. आकृति में ∆ABC एक समबाहु त्रिभुज है, जिसकी भुजा 10 cm है और ∆DBC एक समकोण त्रिभुज है, जिसमें 3 20  $\angle D = 90^{\circ}$  है। यदि BD = 6 cm हो, तो छायांकित भाग का क्षेत्रफल ज्ञात कीजिए ।( $\sqrt{3} = 1.732$ ) In the given figure  $\triangle$ ABC is equilateral triangle with side 10 cm and  $\triangle$ DBC is right angled at  $\angle D = 90^\circ$ . If BD = 6 cm, find the area of the shaded portion ( $\sqrt{3} = 1.732$ ) Chase Excellence खण्ड-द/SECTION - D प्रश्न संख्या 21 से 31 तक प्रत्येक प्रश्न 4 अंक का है। Question numbers 21 to 31 carry 4 marks each. दो कक्षा साथियों सलमा और अनिल ने दोहरान वाले समय काल में दो भिन्न-भिन्न व्यंजकों को सरल किया तथा 4 21 परस्पर अपने समीकरणों को स्पष्ट किया। सलमा ने  $\frac{\sqrt{2}}{\sqrt{5}+\sqrt{3}}$  के सरलीकरण को स्पष्ट किया तथा अनिल ने  $\sqrt{28} + \sqrt{98} + \sqrt{147}$  के सरलीकरण को स्पष्ट किया। दोनों सरलीकरणों को लिखिए। इससे कौन–सा मूल्य प्रदर्शित

|    | होता है ?                                                                                                                                                         |   |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    | Two classmates Salma and Anil simplified two different expressions during the revision hour $\sqrt{2}$                                                            |   |
|    | and explained to each other their simplifications. Salma explains simplification of $\frac{\sqrt{2}}{\sqrt{5}+\sqrt{3}}$                                          |   |
|    | and Anil explains simplifications of $\sqrt{28} + \sqrt{98} + \sqrt{147}$ . Write both the simplifications. What value does it depict ?                           |   |
| 22 | यदि $x = \frac{1}{2 - \sqrt{3}}$ हो, तो $x^3 - 2x^2 - 7x + 5$ का मान ज्ञात कीजिए।                                                                                 | 4 |
|    | If $x = \frac{1}{2 - \sqrt{3}}$ , find the value of $x^3 - 2x^2 - 7x + 5$ .                                                                                       |   |
| 23 | दर्शाइए कि $2x^3 + 5x^2 - 37x - 60$ का एक गुणानखंड $2x + 3$ है। साथ ही, अन्य गुणनखंड भी ज्ञात कीजिए।                                                              | 4 |
|    | Show that $2x + 3$ is a factor of $2x^3 + 5x^2 - 37x - 60$ . Also, find the other factors.                                                                        |   |
| 24 | गुणनखंड कोजिए: (p + q) <sup>2</sup> - 20 (p + q) - 125 1                                                                                                          | 4 |
|    | Factorise : $(p+q)^2 - 20 (p+q) - 125$                                                                                                                            |   |
|    | ICHNII THTODIAL                                                                                                                                                   |   |
| 25 | यदि $(x-p)$ बहुपद $x^5 - p^2 x^3 + 2x + p + 3$ का गुणनखण्ड हो, तो 'p' का मान ज्ञात कोजिए। तदानुसार                                                                | 4 |
|    | $x^2 + 4px + 3$ के गुणन खण्ड भी ज्ञात कोजिए।<br>Find the value of 'p' if $(x - p)$ is a factor of $x^5 - p^2x^3 + 2x + p + 3$ . Hence factorise $x^2 + 4px + 3$ . |   |
|    | That the value of $p$ if $(x - p)$ is a factor of $x - p - x + p + 0$ . Hence factor is $e^{-x} + ip^{-x} + 0$ .                                                  |   |
| 26 | यदि (x – 3) और $\left(x - \frac{1}{3}\right)$ दोनों ax <sup>2</sup> + 5x + b के गुणनखंड हैं, तो दर्शाइए कि a = b है।                                              | 4 |
|    | If $(x-3)$ and $\left(x-\frac{1}{3}\right)$ are both factors of $ax^2+5x+b$ , then show that $a=b$ .                                                              |   |
|    |                                                                                                                                                                   |   |
| 27 | दी गई आकृति में $AB = AD, ∠1 = ∠2$ और $∠3 = ∠4$ है। सिद्ध कीजिए कि $AP = AQ$ है।                                                                                  | 4 |





BSE Coaching for Mathematics MARKING SCHEME V15PCAF SUMMATIVE ASSESSMENT - I, MATHEMATICS Class - IX SECTION - A Question numbers 1 to 4 carry 1 mark each. 1 .428571 1 1 2 1 3 (B) 1 4 4 1 **SECTION - B** Question numbers 5 to 10 carry 2 marks each. 5 2  $(512)^{\frac{-2}{3}} = (8^3)^{\frac{-2}{3}} = 8^3 \times \frac{-2}{3} = 8^{-2} = \frac{1}{64}$ 6 Put t =  $-\frac{1}{2}$ 2  $q\left(-\frac{1}{2}\right) = 4\left(-\frac{1}{8}\right) + 4\left(\frac{1}{4}\right) - \left(-\frac{1}{2}\right) - 1 = \frac{-1}{2} + 1 + \frac{1}{2} - 1 = 0$ Yes, 2t + 1 exactly divides the polynomial q(t)7 Proving using Euclid's axiom. 2 8 In a circle, having centre at P 2 We have FK = FQ = radiiIn a circle, having centre at Q QR = QP = radii......1/2 Euclid's first axiom :- things which are equal to the same things are equal to one another ......1/2  $\therefore PR = PQ = QR$ 9 2 12 B 20  $\angle AOB = 90^{\circ}$  $\therefore \text{ OB} = \sqrt{20^2 - 12^2}$  $= 16 \, \mathrm{m}$  $\therefore BD = 2 \times 16 = 32 m$ Area of ABCD =  $\frac{1}{2} \times d_1 \times d_2$  =  $\frac{1}{2} \times 24 \times 32$  = 384 m<sup>2</sup>  $s = \frac{35 + 54 + 61}{2} = \frac{150}{2} = 75$ 2 10 Area of the triangle =  $\sqrt{75(75 - 35)(75 - 54)(75 - 61)} = \sqrt{75 \times 40 \times 21 \times 14} = 420\sqrt{5}$  sq. cm

|    | SECTION - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    | Question numbers 11 to 20 carry 3 marks each.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| 11 | Yes, $a + b$ is an irrational number<br>Let $a = \sqrt{3}$ is an irrational number<br>b = 1.15 is a rational number<br>so, $a + b = 1.732 \dots + 1.15$<br>$= 2.882 \dots$ is an irrational number as decimal expansion 2.882 is non<br>terminating and non recurring.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 |
| 12 | Similarly, taking $a = \pi$ and $b = 5$ , we have $a + b = 3.145 + 5 = 8.1415$ which is irrational.<br>Let $x = 4.0\overline{35} = 4.03535$<br>10x = 40.3535<br>1000x = 4035.35<br>990x = 3995<br>$x = \frac{3995}{990} = \frac{799}{198}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 |
| 13 | x + y + z = 0<br>$\Rightarrow x + y = -z$<br>$\Rightarrow (x + y)^3 = (-z)^3 \text{ (cubing both sides)}$<br>$\Rightarrow x^3 + y^3 + 3xy (x + y) = -z^3$<br>$\Rightarrow x^3 + y^3 + 3xy (-z) = -z^3$<br>$\Rightarrow x^3 + y^3 - 3xyz = -z^3$<br>$\Rightarrow x^3 + y^3 + z^3 = 3xyz$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 |
| 14 | $a - b = 7, a^{2} + b^{2} = (a - b)^{2} + 2 ab$<br>$\Rightarrow 85 = 7^{2} + 2 ab \Rightarrow 85 - 49 = 2 ab \Rightarrow ab = 18$<br>$a^{3} - b^{3} = (a - b)^{3} + 3 ab (a - b) = 7^{3} + 3 (18) (7) = 343 + 54 \times 7 = 721$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 |
| 15 | $\angle ABD = \angle A$<br>$\angle CBD = \angle C$<br>$\angle ABD + \angle CBD = \angle A + \angle C$<br>$\angle B = \angle A + \angle C$<br>$\angle A + \angle B + \angle C = 180^{\circ}$<br>$\angle B = 90^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 |
| 16 | In $\Delta PQR PR > PQ$<br>P<br>Q<br>Q<br>S<br>R<br>R<br>P<br>P<br>P<br>R<br>R<br>P<br>PQR > PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PR<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ<br>PRQ | 3 |

|    | ACBSE Coaching for Mathematics and Science                                                                                                                                                                                                                                                                                                                                                               |   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    | Adding (1), (2)(ii) $ PQR + D1 > +  PRQ + D2 $ $ PSR >  PSQ$                                                                                                                                                                                                                                                                                                                                             |   |
| 17 | A $G$ $G$ $H$ $G$                                                                                                                                                                                                                                                                                                                                                    | 3 |
| 18 | In $\triangle$ ABC and $\triangle$ ADC, AB = AD (given)<br>$\angle$ BAC = $\angle$ DAC (AC is angle bisector)<br>AC common<br>$\therefore \triangle$ ABC $\cong \triangle$ ADC (SAS) $\Rightarrow$ BC = DC (CPCT)                                                                                                                                                                                        | 3 |
| 19 | Let each equal side of the $\Delta^{le}$ be 'x' cm<br>$\therefore s = \frac{x + x + 24}{2} = (x + 12) \text{ cm}$ Area = $\sqrt{s(s - a)(s - b)(s - c)}$<br>$60 = \sqrt{(x + 12)(x + 12 - x)(x + 12 - x)(x + 12 - 24)}$<br>$60 = 12\sqrt{x^2 - 144}$<br>$5 = \sqrt{x^2 - 144}$<br>$25 = x^2 - 144$<br>$\therefore x^2 = 169, \therefore x = 13$<br>$\therefore$ Perimeter = 50 cm                        | 3 |
| 20 | Area of equilateral triangle $= \frac{\sqrt{3}}{4} a^2 = \frac{\sqrt{3}}{4} \cdot 10^2 = 25\sqrt{3} \text{ cm}^2 = 43.3 \text{ cm}^2$<br>In $\Delta$ BDC, DC $= \sqrt{10^2 - 6^2} = 8 \text{ cm}$<br>Area of $\Delta$ BDC $= \frac{1}{2} \times 6 \times 8 = 24 \text{ cm}^2$<br>Area of shaded region $= 43.3 - 24 = 19.3 \text{ cm}^2$<br>SECTION - D<br>Question numbers 21 to 31 carry 4 marks each. | 3 |
| 21 |                                                                                                                                                                                                                                                                                                                                                                                                          | 4 |
| 21 | $\frac{\sqrt{2}}{\sqrt{5} + \sqrt{3}} = \frac{\sqrt{2}}{\sqrt{5} + \sqrt{3}} \times \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} - \sqrt{3}}$                                                                                                                                                                                                                                                                     | 4 |

|    | $=\frac{\sqrt{2}(\sqrt{5}-\sqrt{3})}{2}=\frac{\sqrt{10}-\sqrt{6}}{2}$                                                                                                                                                |   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    | 2 2                                                                                                                                                                                                                  |   |
|    | $2\sqrt{7}+\sqrt{98}+\sqrt{147} = \sqrt{4\times7} + \sqrt{49\times2} + \sqrt{49\times3} = 2\sqrt{7} + 7\sqrt{2} + 7\sqrt{3}$<br>Value : cooperative learning among classmates without any gender and religious bias. |   |
| 22 |                                                                                                                                                                                                                      | 4 |
|    | $x = \frac{1}{2 - \sqrt{3}} \times \frac{2 + \sqrt{3}}{2 + \sqrt{3}} = \frac{2 + \sqrt{3}}{4 - 3} = 2 + \sqrt{3}$                                                                                                    |   |
|    | $x-2=\sqrt{3}$                                                                                                                                                                                                       |   |
|    | $(x-2)^2 = 3 \implies x^2 - 4x + 4 = 3 \implies x^2 - 4x + 1 = 0$                                                                                                                                                    |   |
| 22 | Given expression = $(x^2 - 4x + 1)(x + 2) + 3 = (0)(x + 2) + 3 = 3$                                                                                                                                                  | Δ |
| 23 | Let $p(x) = 2x^3 + 5x^2 - 37x - 60$                                                                                                                                                                                  | 4 |
|    | $p\left(\frac{-3}{2}\right) = 2\left(\frac{-3}{2}\right)^3 + 5\left(\frac{-3}{2}\right)^2 - 37\left(\frac{-3}{2}\right) - 60$                                                                                        |   |
|    | $=\frac{-54}{8}+\frac{45}{4}+\frac{111}{2}-60$                                                                                                                                                                       |   |
|    | $= \frac{-27}{4} + \frac{45}{4} + \frac{222}{4} - \frac{240}{4} = 0$                                                                                                                                                 |   |
|    | $\Rightarrow 2x + 3 \text{ is a factor of } 2x^3 + 5x^3 - 37x - 60$                                                                                                                                                  |   |
|    | Dividing $p(x)$ by $2x + 3$                                                                                                                                                                                          |   |
|    | $2x+3$ $2x^3+5x^2-37x-60(x^2+x-20)$                                                                                                                                                                                  |   |
|    | $2x + 3 = 2x^{3} + 5x^{2} - 37x - 60(x^{2} + x - 20)$ $2x^{3} + 3x^{2}$                                                                                                                                              |   |
|    | $\frac{-}{2x^2 - 37x}$                                                                                                                                                                                               |   |
|    | 2x <sup>2</sup> -3/x<br>2x <sup>2</sup> S <sub>3</sub> x NL TUTORIAL                                                                                                                                                 |   |
|    | C40x-60 se Excellence                                                                                                                                                                                                |   |
|    | $\frac{-40x-60}{0}$                                                                                                                                                                                                  |   |
|    | $\therefore x^2 + x - 20 = (x - 4) (x + 5)$                                                                                                                                                                          |   |
|    | $\therefore$ The factors of p(x) are (x - 4) (x + 5) (2x + 3)                                                                                                                                                        |   |
| 24 | On putting $(p+q)^2 = a in (1)$ we get                                                                                                                                                                               | 4 |
|    | $(p+q)^2 - 20(p+q) - 125 = a^2 - 20a - 125$                                                                                                                                                                          |   |
|    | $=a^{2}+5a-25a+(-25)$ (5)                                                                                                                                                                                            |   |
|    | $=(a^{2}+5a) + [-25a+(-25)(5)]$                                                                                                                                                                                      |   |
|    | =a(a+5) - 25(a+5)                                                                                                                                                                                                    |   |
|    | = (a+5) (a-25) (2)                                                                                                                                                                                                   |   |
|    | Replacing 'a' by $(p + q)$ on both sides of (2), we get                                                                                                                                                              |   |

|    | ACBSE Coaching for Mathematics and Science                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    | $(p+q)^2 - 20(p+q) - 125 = (p+q+5) (p+q-25)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| 25 | Let $Q(x) = x^5 - p^2 x^3 + 2x + p + 3$<br>$Q(p) = p^5 - p^5 + 2p + p + 3 = 0$<br>3p + 3 = 0 $p = -1\therefore x^2 + 4(-1)x + 3 = x^2 - 4x + 3 = (x - 3)(x - 1)$                                                                                                                                                                                                                                                                                                                                                                             | 4 |
| 26 | Let $p(x) = ax^2 + 5x + b$<br>p(3) = 0 [Q (x-3) is a factor]<br>(i.e.) $9a + 15 + b = 0$<br>or<br>$9a + 15 = -b \rightarrow (1)$<br>or<br>9a + b = -15<br>$p\left(\frac{1}{3}\right) = 0$ [Q $x - \frac{1}{3}$ is a factor of $p(x)$ ]<br>(i.e.) $\left(\frac{1}{3}\right)^2 a + 5\left(\frac{1}{3}\right) + b = 0$<br>$\frac{a}{9} + \frac{5}{3} + b = 0$<br>$\frac{a + 15 + 9b}{9} = 0$<br>a + 15 + 9b = 0<br>$a + 9b = -15 \rightarrow (2)$<br>from (1) and (2)<br>9a + b = a + 9b<br>9a - a = 9b - b<br>8a = 8b<br><b>SUNIL TUTORIAL</b> | 4 |
| 27 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 |
| 28 | AQ = AP(cpct)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 |

### ACBSE Coaching for Mathematics and S Science $y + \angle B + \angle C + 2x = 360^{\circ} + y$ $180^{\circ} + 2x = 360^{\circ} + y$ .....1 $2x = 180^{\circ} + y$ 29 4 F D Fig By Median theorem AB + AC > 2AD, BC + BA > 2BEand CA + CB > 2CF2(AB + BC + CA) > 2(AD + BE + CF) $\therefore$ Sum of 3 sides of $\triangle ABC >$ Sum of three medians of $\triangle ABC$ $\angle BAD + \angle DAC = \angle CAE + \angle CAD$ 30 4 $\Rightarrow \angle BAC = \angle DAE$ Proving ∆BAC≅∆DAE BC = DE $\angle QPS = \angle SPR$ 31 4 In $\Delta PQT$ , $\angle Q + \angle QPT + 90^\circ = 180^\circ$ $\angle Q = 90^\circ - \angle QPT$ In $\Delta PTR$ , $\angle R + \angle RPT + 90^\circ = 180^\circ$ $\angle R = 90^\circ - \angle RPT$ $\angle Q - \angle R = 90 - \angle QPT - 90 + \angle RPT$ $= \angle RPT - \angle QPT$ $= \angle TPS + \angle SPR - [\angle QPS - \angle TPS]$ $= 2 \angle TPS$ (or) $\angle \text{TPS} = \frac{1}{2} (\angle Q - \angle R)$