संकलित परीक्षा - I, 2013
 SUMMATIVE ASSESSMENT - I, 2013
 गणित/ MATHEMATICS
 कक्षा - IX / Class - IX

निर्धारित समय : 3 घण्टे

Time Allowed : 3 hours

अधिकतम अंक : 90
Maximum Marks : 90

सामान्य निर्देश :

General Instructions:

सभी प्रश्न अनिवार्य हैं।
All questions are compulsory.

इस प्रश्न पत्र में 31 प्रश्न हैं, जिन्हें चार खण्डों अ, ब, स तथा द में बांटा गया है। खण्ड-अ में 4 प्रश्न हैं जिनमें प्रत्येक 1 अंक का है; खण्ड-ब में 6 प्रश्न हैं जिनमें प्रत्येक के 2 अंक हैं; खण्ड-स में 10 प्रश्न हैं जिनमें प्रत्येक के 3 अंक है; तथा खण्ड-द में 11 प्रश्न हैं जिनमें प्रत्येक के 4 अंक हैं।

The question paper consists of 31 questions divided into four sections A, B, C and D. SectionA comprises of 4 questions of 1 mark each; Section-B comprises of 6 questions of 2 marks each; Section-C comprises of 10 questions of 3 marks each and Section-D comprises of 11 questions of 4 marks each.

इस प्रश्न पत्र में कोई विकल्प नहीं है।
There is no overall choice in this question paper

कैलकुलेटर का प्रयोग वर्जित है।
Use of calculator is not permitted.

खण्ड-अ / SECTION - A

प्रश्न संख्या 1 से 4 तक प्रत्येक प्रश्न 1 अंक का है।
Question numbers 1 to 4 carry 1 mark each.

Find the decimal expansion of $\frac{3}{7}$.

2

यदि $\mathrm{p}(x)=x^{2}-2 \sqrt{2} x+1$ हो, तो $\mathrm{p}(2 \sqrt{2})$ ज्ञात कीजिए।
If $\mathrm{p}(x)=x^{2}-2 \sqrt{2} x+1$, then find the value of $\mathrm{p}(2 \sqrt{2})$.

चित्र में $\mathrm{AB} \| \mathrm{CD}$ है। x का मान ज्ञात कीजिए।

In the figure $A B \| C D$. Find the value of x.

निर्देशांक अक्ष, तल को कितने भागों में बाँटते हैं ?
The co-ordinate axes divide the plane into how many parts ?

खण्ड-ब / SECTION - B

प्रश्न संख्या 5 से 10 तक प्रत्येक प्रश्न 2 अंक का है।
Question numbers 5 to 10 carry 2 marks each.

मान निकालिए : $\sqrt[3]{512^{-2}}$
Evaluate : $\sqrt[3]{512^{-2}}$

जाँच कीजिए कि क्या बहुपद $\mathrm{q}(\mathrm{t})=4 \mathrm{t}^{3}+4 \mathrm{t}^{2}-\mathrm{t}-1,2 \mathrm{t}+1$ से पूर्णतया विभाजित होता है ।
Check if the polynomial $\mathrm{q}(\mathrm{t})=4 \mathrm{t}^{3}+4 \mathrm{t}^{2}-\mathrm{t}-1$ is exactly divisible by $2 \mathrm{t}+1$.

सिद्ध कीजिए कि दो भिन्र रेखाओं में एक से अधिक बिन्दु उभयनिष्ठ नहीं हो सकता।
Prove that "Two distinct lines cannot have more than one point in common".

दो प्रतिच्छेदी वृत्तों के केन्द्र बिंदु P और Q हैं। सिद्ध कीजिए कि $\mathrm{PQ}=\mathrm{QR}=\mathrm{PR}$ है।

P and Q are the centres of two intersecting circles. Prove that $P Q=Q R=P R$.

एक समचतुर्भुज का क्षेत्रफल ज्ञात कीजिए, जबकि इसकी एक भुजा 20 m और एक विकर्ण 2 24 m है।
Find the area of a rhombus whose one side is 20 m and one diagonal is 24 m .

त्रिभुज का क्षेत्रफल ज्ञात कीजिए जबकि उसकी भुजाएँ $35 \mathrm{~cm}, 54 \mathrm{~cm}$ और 61 cm हैं।
Find the area of the triangle with sides $35 \mathrm{~cm}, 54 \mathrm{~cm}$ and 61 cm .

खण्ड-स/SECTION - C

प्रश्न संख्या 11 से 20 तक प्रत्येक प्रश्न 3 अंक का हैं।

Question numbers 11 to 20 carry 3 marks each.

मान लीजिए कि a और b क्रमशः परिमेय और अपरिमेय संख्याएँ हैं। क्या $\mathrm{a}+\mathrm{b}$ एक अपरिमेय संख्या है? अपने 3 उत्तर का औचित्य दीजिए।
Let a and b be rational and irrational numbers respectively. Is $a+b$ an irrational number ? Justify your answer.
$4.0 \overline{35}$ को $\frac{\mathrm{p}}{\mathrm{q}}$ के रूप में व्यक्त कीजिए जबकि p और q पूर्णांक हैं तथा $\mathrm{q} \neq 0$ है।
Express $4.0 \overline{35}$ in the form of $\frac{p}{q}$ where p and q are integers and $q \neq 0$.

यदि $x+y+z=0$ है, तो दर्शाइए कि $x^{3}+y^{3}+z^{3}=3 x y z$ है। If $x+y+z=0$, show that $x^{3}+y^{3}+z^{3}=3 x y z$.

यदि $\mathrm{a}-\mathrm{b}=7$ और $\mathrm{a}^{2}+\mathrm{b}^{2}=85$ है, तो $\mathrm{a}^{3}-\mathrm{b}^{3}$ ज्ञात कीजिए।
If $a-b=7$ and $a^{2}+b^{2}=85$, find $a^{3}-b^{3}$.
$\triangle \mathrm{ABC}$ में यदि AC पर बिंदु D इस प्रकार है कि $\mathrm{AD}=\mathrm{CD}=\mathrm{BD}$ है, तो सिद्ध कीजिए कि $\triangle \mathrm{ABC}$ एक समकोण 3 त्रिभुज है।
In $\Delta \mathrm{ABC}$, if D is a point on AC such that $\mathrm{AD}=\mathrm{CD}=\mathrm{BD}$, then prove that $\Delta \mathrm{ABC}$ is a right angles triangle.

दी गई आकृति में $\mathrm{PR}>\mathrm{PQ}$ तथा $\mathrm{PS}, \angle \mathrm{QPR}$ को समद्विभाजित करता है। सिद्ध कीजिए 3 $\angle \mathrm{PSR}>\angle \mathrm{PSQ}$ है।

In the given figure $\mathrm{PR}>\mathrm{PQ}$ and PS bisects $\angle \mathrm{QPR}$. Prove that $\angle \mathrm{PSR}>\angle \mathrm{PSQ}$

एक तिर्यक रेखा दो रेखाओं को काटती है। इस प्रकार बने अन्तः एकान्तर कोणों के समद्विभाजक यदि परस्पर 3 समान्तर हों तो सिद्ध कीजिए कि रेखाएं समान्तर हैं।
If the bisectors of a pair of alternate angles formed by a transversal with two given lines are parallel, prove that the given lines are parallel.

चित्र में ABCD एक चतुर्भुज है जिसमें $\mathrm{AB}=\mathrm{AD}$ और $\angle \mathrm{A}$ का समद्विभाजक AC है। दर्शाइए कि $\triangle \mathrm{ABC} \cong \triangle \mathrm{ADC}$ 3 और $\mathrm{BC}=\mathrm{DC}$ है।

In the figure, $A B C D$ is a quadrilateral such that $A B=A D$ and $A C$ is the bisector of the angle A. Show that $\triangle \mathrm{ABC} \cong \triangle \mathrm{ADC}$ and $\mathrm{BC}=\mathrm{DC}$.

एक समद्विबाहु त्रिभुज का आधार 24 cm है और क्षेत्रफल $60 \mathrm{~cm}^{2}$ है। इसका परिमाप ज्ञात कीजिए।

आकृति में $\triangle \mathrm{ABC}$ एक समबाहु त्रिभुज है, जिसकी भुजा 10 cm है और $\triangle \mathrm{DBC}$ एक समकोण त्रिभुज है, जिसमें 3 $\angle \mathrm{D}=90^{\circ}$ है। यदि $\mathrm{BD}=6 \mathrm{~cm}$ हो, तो छायांकित भाग का क्षेत्रफल ज्ञात कीजिए। $(\sqrt{3}=1.732)$

In the given figure $\triangle \mathrm{ABC}$ is equilateral triangle with side 10 cm and $\triangle \mathrm{DBC}$ is right angled at $\angle \mathrm{D}=90^{\circ}$. If $\mathrm{BD}=6 \mathrm{~cm}$, find the area of the shaded portion $(\sqrt{3}=1.732)$

खण्ड-द/ SECTION - D

प्रश्न संख्या 21 से 31 तक प्रत्येक प्रश्न 4 अंक का है।

Question numbers 21 to 31 carry 4 marks each.

दो कक्षा साथियों सलमा और अनिल ने दोहरान वाले समय काल में दो भिन्न-भिन्न व्यंजकों को सरल किया तथा 4 परस्पर अपने समीकरणों को स्पष्ट किया। सलमा ने $\frac{\sqrt{2}}{\sqrt{5}+\sqrt{3}}$ के सरलीकरण को स्पष्ट किया तथा अनिल ने $\sqrt{28}+\sqrt{98}+\sqrt{147}$ के सरलीकरण को स्पष्ट किया। दोनों सरलीकरणों को लिखिए। इससे कौन-सा मूल्य प्रदर्शित

होता है ?
Two classmates Salma and Anil simplified two different expressions during the revision hour and explained to each other their simplifications. Salma explains simplification of $\frac{\sqrt{2}}{\sqrt{5}+\sqrt{3}}$ and Anil explains simplifications of $\sqrt{28}+\sqrt{98}+\sqrt{147}$. Write both the simplifications. What value does depict?

यदि $x=\frac{1}{2-\sqrt{3}}$ हो, तो $x^{3}-2 x^{2}-7 x+5$ का मान ज्ञात कीजिए। If $x=\frac{1}{2-\sqrt{3}}$, find the value of $x^{3}-2 x^{2}-7 x+5$.

दर्शाइए कि $2 x^{3}+5 x^{2}-37 x-60$ का एक गुणानखंड $2 x+3$ है। साथ ही, अन्य गुणनखंड भी ज्ञात कीजिए। Show that $2 x+3$ is a factor of $2 x^{3}+5 x^{2}-37 x-60$. Also, find the other factors.

गुणनखंड कीजिए : $(p+q)^{2}-20(p+q)-125-1$
Factorise : $(p+q)^{2}-20(p+q)-125$

यदि $(x-\mathrm{p})$ बहुपद $x^{5}-\mathrm{p}^{2} x^{3}+2 x+\mathrm{p}+3$ का गुणनखण्ड हो, तो ' p ' का मान ज्ञात कीजिए। तदानुसार 4 $x^{2}+4 \mathrm{p} x+3$ के गुणन खण्ड भी ज्ञात कीजिए।
Find the value of ' p ' if $(x-\mathrm{p})$ is a factor of $x^{5}-\mathrm{p}^{2} x^{3}+2 x+\mathrm{p}+3$. Hence factorise $x^{2}+4 \mathrm{p} x+3$.

यदि $(x-3)$ और $\left(x-\frac{1}{3}\right)$ दोनों $\mathrm{ax}+5 x+\mathrm{b}$ के गुणनखंड हैं, तो दर्शाइए कि $\mathrm{a}=\mathrm{b}$ है।
If $(x-3)$ and $\left(x-\frac{1}{3}\right)$ are both factors of $\mathrm{a}^{2}+5 x+\mathrm{b}$, then show that $\mathrm{a}=\mathrm{b}$.

दी गई आकृति में $\mathrm{AB}=\mathrm{AD}, \angle 1=\angle 2$ और $\angle 3=\angle 4$ है। सिद्ध कीजिए कि $\mathrm{AP}=\mathrm{AQ}$ है।

In figure $\mathrm{AB}=\mathrm{AD}, \angle 1=\angle 2$ and $\angle 3=\angle 4$. Prove that $\mathrm{AP}=\mathrm{AQ}$.

In $\triangle A B C, B D$ and $C D$ are internal bisector of $\angle B$ and $\angle C$ respectively. Prove that $180^{\circ}+y=2 x$.

सिद्ध कीजिए कि त्रिभुज का परिमाप त्रिभुज की मध्यिकाओं के योग सेबड़ा है।
Show that the perimeter of a Δ is greater than the sum of its three medians.

चित्र में $\mathrm{AB}=\mathrm{AD}, \mathrm{AC}=\mathrm{AE}$ और $\angle \mathrm{BAD}=\angle \mathrm{CAE}$ है। सिद्ध कीजिए कि $\mathrm{BC}=\mathrm{DE}$ है ।

In the figure, $\mathrm{AB}=\mathrm{AD}, \mathrm{AC}=\mathrm{AE}$ and $\angle \mathrm{BAD}=\angle \mathrm{CAE}$. Prove that $\mathrm{BC}=\mathrm{DE}$.

चित्र में $\angle \mathrm{P}$ का समद्विभाजक PS और $\mathrm{PT} \perp \mathrm{QR}$ है। सिद्ध कीजिए कि $\angle \mathrm{TPS}=\frac{1}{2}(\angle \mathrm{Q}-\angle \mathrm{R})$ है।

In figure, PS is the bisector of $\angle \mathrm{P}$ and $\mathrm{PT} \perp \mathrm{QR}$. Show that $\angle \mathrm{TPS}=\frac{1}{2}(\angle \mathrm{Q}-\angle \mathrm{R})$.

Jsuril turoanl
 ACBSE Coaching for Olathematies and Science

MARKING SCHEME
 V15PCAF
 SUMMATIVE ASSESSMENT - I, MATHEMATICS Class - IX SECTION - A

Question numbers 1 to 4 carry 1 mark each.

21
3 (B)
$4 \quad 4$
.$\overline{428571}$

SECTION - B

Question numbers 5 to 10 carry 2 marks each.
$(512)^{\frac{-2}{3}}=\left(8^{3}\right)^{\frac{-2}{3}}=8^{3 \times \frac{-2}{3}}=8^{-2}=\frac{1}{64}$
Put $t=-\frac{1}{2}$
$\mathrm{q}\left(-\frac{1}{2}\right)=4\left(-\frac{1}{8}\right)+4\left(\frac{1}{4}\right)-\left(-\frac{1}{2}\right)-1=\frac{-1}{2}+1+\frac{1}{2}-1=0$
Yes, $2 \mathrm{t}+1$ exactly divides the polynomial $\mathrm{q}(\mathrm{t})$
7 Proving using Euclid's axiom. .. 2

In a circle, having centre at P
We have
$\mathrm{PR}=\mathrm{PQ}=$ radii
In a circle, having centre at Q
$\mathrm{QR}=\mathrm{QP}=$ radii
....................1/2
Euclid's first axiom :- things which are equal to the same things are equal to one another
$\therefore \mathrm{PR}=\mathrm{PQ}=\mathrm{QR}$ $.1 / 2$

$\angle \mathrm{AOB}=90^{\circ}$
$\therefore \mathrm{OB}=\sqrt{20^{2}-12^{2}}$
$=16 \mathrm{~m}$
$\therefore \mathrm{BD}=2 \times 16=32 \mathrm{~m}$
Area of $\mathrm{ABCD}=\frac{1}{2} \times \mathrm{d}_{1} \times \mathrm{d}_{2} \quad=\frac{1}{2} \times 24 \times 32 \quad=384 \mathrm{~m}^{2}$
$s=\frac{35+54+61}{2}=\frac{150}{2}=75$

Area of the triangle $=\sqrt{75(75-35)(75-54)(75-61)}=\sqrt{75 \times 40 \times 21 \times 14}=420 \sqrt{5}$ sq. cm

Jsuril turoanl ACBSE Coaching for OCathematics and Science

SECTION - C

Question numbers 11 to 20 carry 3 marks each.
11 Yes, $\mathrm{a}+\mathrm{b}$ is an irrational number
Let $\mathrm{a}=\sqrt{3}$ is an irrational number
$\mathrm{b}=1.15$ is a rational number
so, $a+b=1.732 \ldots . .+1.15$
$=2.882 \ldots .$. is an irrational number as decimal expansion $2.882 \ldots$ is non
terminating and non recurring.
Similarly, taking $a=\pi$ and $b=5$, we have $a+b=3.145 \ldots+5=8.1415 \ldots$ which is irrational.
$x+y+z=0$
$\Rightarrow x+y=-z$
$\Rightarrow(x+y)^{3}=(-z)^{3}$ (cubing both sides)
$\Rightarrow x^{3}+y^{3}+3 x y(x+y)=-z^{3}$
$\Rightarrow x^{3}+y^{3}+3 x y(-z)=-z^{3}$
$\Rightarrow x^{3}+y^{3}-3 x y z=-z^{3}$
$\Rightarrow x^{3}+y^{3}+z^{3}=3 x y z$

$$
\begin{aligned}
& \mathrm{a}-\mathrm{b}=7, \mathrm{a}^{2}+\mathrm{b}^{2}=(\mathrm{a}-\mathrm{b})^{2}+2 \mathrm{ab} \\
& \quad \Rightarrow 85=7^{2}+2 \mathrm{ab} \Rightarrow 85-49=2 \mathrm{ab} \Rightarrow \mathrm{ab}=18 \\
& \mathrm{a}^{3}-\mathrm{b}^{3}=(\mathrm{a}-\mathrm{b})^{3}+3 \mathrm{ab}(\mathrm{a}-\mathrm{b})=7^{3}+3(18)(7)=343+54 \times 7=721 \\
& \angle \mathrm{ABD}=\angle \mathrm{A} \\
& \angle \mathrm{CBD}=\angle \mathrm{C} \\
& \angle \mathrm{ABD}+\angle \mathrm{CBD}=\angle \mathrm{A}+\angle \mathrm{C} \\
& \angle \mathrm{~B}=\angle \mathrm{A}+\angle \mathrm{C} \\
& \angle \mathrm{~A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \\
& \angle \mathrm{B}=90^{\circ}
\end{aligned}
$$

Jsuril turoanl ACBSE Coaching for D(athematics and Science

> Adding (1), (2)
> PQR + Đ1 > + ${ }^{\mathrm{PRQ}}+$ Đ2
> PSR > PSQ
(ii)

Given, to prove, figure
$11 / 2$
Proof: GM \| HL
$\therefore \angle 2=\angle 3$ (1)
.1/2
Also $\angle 1=\angle 2$ and $\angle 3=\angle 4$--------(2)
.1/2
(1) and (2) $\Rightarrow \angle 1=\angle 4$
$\angle 1+\angle 2=\angle 3+\angle 4$
$\Rightarrow \angle \mathrm{AGH}=\angle \mathrm{DHG} \Rightarrow \mathrm{AB} \| \mathrm{CD}$
18 In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADC}, \mathrm{AB}=\mathrm{AD}$ (given)
$\angle \mathrm{BAC}=\angle \mathrm{DAC}$ (AC is angle bisector)
AC common
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{ADC}(\mathrm{SAS}) \Rightarrow \mathrm{BC}=\mathrm{DC}(\mathrm{CPCT})$
19 Let each equal side of the $\Delta^{\text {le }}$ be ' $x^{\prime} \mathrm{cm}$
$\therefore \mathrm{s}=\frac{x+x+24}{2}=(x+12) \mathrm{cm}$
Area $=\sqrt{s(s-a)(s-b)(s-c)}$
$60=\sqrt{(x+12)(x+12-x)(x+12-x)(x+12-24)}$
$60=12 \sqrt{x^{2}-144}$
$5=\sqrt{x^{2}-144}$
$25=x^{2}-144$
$\therefore x^{2}=169, \therefore x=13$
\therefore Perimeter $=50 \mathrm{~cm}$
Area of equilateral triangle $=\frac{\sqrt{3}}{4} a^{2}=\frac{\sqrt{3}}{4} \cdot 10^{2}=25 \sqrt{3} \mathrm{~cm}^{2} \quad=43.3 \mathrm{~cm}^{2}$
In $\triangle \mathrm{BDC}, \mathrm{DC}=\sqrt{10^{2}-6^{2}}=8 \mathrm{~cm}$
Area of $\triangle \mathrm{BDC}=\frac{1}{2} \times 6 \times 8=24 \mathrm{~cm}^{2}$
Area of shaded region $=43.3-24=19.3 \mathrm{~cm}^{2}$

SECTION - D

Question numbers 21 to 31 carry 4 marks each.
21

$$
\frac{\sqrt{2}}{\sqrt{5}+\sqrt{3}}=\frac{\sqrt{2}}{\sqrt{5}+\sqrt{3}} \times \frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}-\sqrt{3}}
$$

IsuTIL Tutional

 ACBSE Coaching for M(athematics and Science

 ACBSE Coaching for M(athematics and Science}

$$
=\frac{\sqrt{2}(\sqrt{5}-\sqrt{3})}{2}=\frac{\sqrt{10}-\sqrt{6}}{2}
$$

$2 \sqrt{7}+\sqrt{98}+\sqrt{147}=\sqrt{4 \times 7}+\sqrt{49 \times 2}+\sqrt{49 \times 3}=2 \sqrt{7}+7 \sqrt{2}+7 \sqrt{3}$
Value : cooperative learning among classmates without any gender and religious bias.
$x=\frac{1}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}}=\frac{2+\sqrt{3}}{4-3}=2+\sqrt{3}$
$x-2=\sqrt{3}$
$(x-2)^{2}=3 \Rightarrow x^{2}-4 x+4=3 \Rightarrow x^{2}-4 x+1=0$
Given expression $=\left(x^{2}-4 x+1\right)(x+2)+3=(0)(x+2)+3=3$
Let $\quad \mathrm{p}(\mathrm{x})=2 x^{3}+5 x^{2}-37 x-60$

$$
\begin{aligned}
p(-3 / 2) & =2\left(\frac{-3}{2}\right)^{3}+5\left(\frac{-3}{2}\right)^{2}-37\left(\frac{-3}{2}\right)-60 \\
& =\frac{-54}{8}+\frac{45}{4}+\frac{111}{2}-60 \\
& =\frac{-27}{4}+\frac{45}{4}+\frac{222}{4}-\frac{240}{4}=0
\end{aligned}
$$

$\Rightarrow 2 x+3$ is a factor of $2 x^{3}+5 x^{3}-37 x-60$
Dividing $\mathrm{p}(x)$ by $2 x+3$

$\therefore x^{2}+x-20=(x-4)(x+5)$
\therefore The factors of $\mathrm{p}(x)$ are $(x-4)(x+5)(2 x+3)$
On putting $(p+q)^{2}=a$ in (1) we get

$$
\begin{align*}
(p+q)^{2} & -20(p+q)-125=a^{2}-20 a-125 \\
& =a^{2}+5 a-25 a+(-25)(5) \\
& =\left(a^{2}+5 a\right)+[-25 a+(-25)(5)] \\
& =a(a+5)-25(a+5) \\
& =(a+5)(a-25) \tag{2}
\end{align*}
$$

Replacing ' a ' by $(p+q)$ on both sides of (2), we get

JSHITL HITITM: ACBSE Coaching for D(athematics and Science

$(p+q)^{2}-20(p+q)-125=(p+q+5)(p+q-25)$

Let $\quad Q(x)=x^{5}-p^{2} x^{3}+2 x+p+3$

Let $\quad \mathrm{p}(x)=\mathrm{a} x^{2}+5 x+b$
$\mathrm{p}(3)=0 \quad[\mathrm{Q}(x-3)$ is a factor $]$
(i.e.) $9 a+15+b=0$
or
$9 a+15=-b \quad \rightarrow(1)$
or
$9 a+b=-15$
$\mathrm{p}\left(\frac{1}{3}\right)=0 \quad\left[\mathrm{Q} x-\frac{1}{3}\right.$ is a factor of $\left.\mathrm{p}(x)\right]$
(i.e.) $\left(\frac{1}{3}\right)^{2} a+5\left(\frac{1}{3}\right)+b=0$
$\frac{a}{9}+\frac{5}{3}+b=0$
$\frac{a+15+9 b}{9}=0$
$a+15+9 b=0$
$a+9 b=-15 \rightarrow(2)$
from (1) and (2)

$$
\begin{aligned}
& 9 a+b=a+9 b \\
& 9 a-a=9 b-b \\
& 8 a=8 b \\
& a=b
\end{aligned}
$$

$$
\angle 1+\angle 3=\angle 2+\angle 4
$$

$$
\angle \mathrm{BAC}=\angle \mathrm{DAC}
$$ 1

In $\triangle \mathrm{DAC}$ and $\triangle \mathrm{BAC}$
$\mathrm{AD}=\mathrm{AB}$ (given)
$\mathrm{AC}=\mathrm{AC}$ (common)
$\angle \mathrm{DAC}=\angle \mathrm{BAC}$ (proved above)
$\therefore \Delta \mathrm{DAC} \cong \Delta \mathrm{BAC} \quad(\mathrm{SAS}) \quad \ldots \ldots \ldots1$
$\angle \mathrm{ADC}=\angle \mathrm{ABC} \quad$ (cpct) $\quad \ldots \ldots \ldots \ldots \ldots . . .^{1 / 2}$
In $\triangle \mathrm{ADQ} \& \Delta \mathrm{ABP}$
$\mathrm{AD}=\mathrm{AB}$
$\angle 2=\angle 1$
$\angle \mathrm{ADQ}=\angle \mathrm{ABC}$
$\therefore \Delta \mathrm{ADQ} \cong \triangle \mathrm{ABP}$
$A Q=A P$
(given)
(given)
(proved above)
(ASA) .1
(cpct) $\quad \ldots \ldots \ldots \ldots \ldots . .^{1 / 2}$

In $\triangle B D C$
$\angle \mathrm{DBC}+\angle \mathrm{DCB}+x=180^{\circ}$. 1
(Angle sum property of Δ)
$2 \angle \mathrm{DBC}+2 \angle \mathrm{DCB}+2 x=360^{\circ}$ \qquad
$\angle \mathrm{B}+\angle \mathrm{C}+2 x=360^{\circ}$
Adding y on both sides

SITIL

$y+\angle \mathrm{B}+\angle \mathrm{C}+2 x=360^{\circ}+y$	
$180^{\circ}+2 x=360^{\circ}+y$	$\ldots \ldots \ldots \ldots \ldots . .1$

Fig
By Median theorem
$\mathrm{AB}+\mathrm{AC}>2 \mathrm{AD}, \quad \mathrm{BC}+\mathrm{BA}>2 \mathrm{BE}$
and $C A+C B>2 C F$
$2(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})>2(\mathrm{AD}+\mathrm{BE}+\mathrm{CF})$
\therefore Sum of 3 sides of $\triangle A B C>$ Sum of three medians of $\triangle A B C$
$\angle \mathrm{BAD}+\angle \mathrm{DAC}=\angle \mathrm{CAE}+\angle \mathrm{CAD}$
$\Rightarrow \angle \mathrm{BAC}=\angle \mathrm{DAE}$
Proving $\triangle \mathrm{BAC} \cong \triangle \mathrm{DAE}$
$\mathrm{BC}=\mathrm{DE}$
$\angle \mathrm{QPS}=\angle \mathrm{SPR}$
FCD A D A
In $\triangle \mathrm{PQT}$,
$\angle \mathrm{Q}+\angle \mathrm{QPT}+90^{\circ}=180^{\circ}$ ²Se EMCe"elnce
$\angle \mathrm{Q}=90^{\circ}-\angle \mathrm{QPT}$
In $\triangle \mathrm{PTR}$,
$\angle \mathrm{R}+\angle \mathrm{RPT}+90^{\circ}=180^{\circ}$
$\angle \mathrm{R}=90^{\circ}-\angle \mathrm{RPT}$
$\angle \mathrm{Q}-\angle \mathrm{R}=96-\angle \mathrm{QPT}-96+\angle \mathrm{RPT}$
$=\angle \mathrm{RPT}-\angle \mathrm{QPT}$
$=\angle \mathrm{TPS}+\angle \mathrm{SPR}-[\angle \mathrm{QPS}-\angle \mathrm{TPS}]$
$=2 \angle \mathrm{TPS}$
(or) $\angle \mathrm{TPS}=\frac{1}{2}(\angle \mathrm{Q}-\angle \mathrm{R})$

