संकलित परीक्षा - I, 2013
 SUMMATIVE ASSESSMENT - I, 2013
 गणित/ MATHEMATICS
 कक्षा - IX / Class - IX

निर्धारित समय : 3 घण्टे

Time Allowed: 3 hours
सामान्य निर्देश :
General Instructions:
सभी प्रश्न अनिवार्य हैं।
All questions are compulsory.

इस प्रश्न पत्र में 31 प्रश्न हैं, जिन्हें चार खण्डों अ, ब, स तथा द में बांटा गया है। खण्ड-अ में 4 प्रश्न हैं जिनमें प्रत्येक 1 अंक का है; खण्ड-ब में 6 प्रश्न हैं जिनमें प्रत्येक के 2 अंक हैं; खण्ड-स में 10 प्रश्न हैं जिनमें प्रत्येक के 3 अंक है; तथा खण्ड-द में 11 प्रश्न हैं जिनमें प्रत्येक के 4 अंक हैं।

The question paper consists of 31 questions divided into four sections A, B, C and D. SectionA comprises of 4 questions of 1 mark each; Section-B comprises of 6 questions of 2 marks each; Section-C comprises of 10 questions of 3 marks each and Section-D comprises of 11 questions of 4 marks each.

इस प्रश्न पत्र में कोई विकल्प नहीं है।
There is no overall choice in this question paper

कैलकुलेटर का प्रयोग वर्जित है।
Use of calculator is not permitted.

खण्ड-अ / SECTION - A

प्रश्न संख्या 1 से 4 तक प्रत्येक प्रश्न 1 अंक का है।
Question numbers 1 to 4 carry 1 mark each.

Find the value of $(14641)^{0.25}$

बहुपद $f(x)=x^{3}+2 x^{2}+8 x+1$ को $x-\frac{1}{2}$ से भाग देने पर शेषफल का मान ज्ञात कीजिए।
Find the value of the remainder of the polynomial $f(x)=x^{3}+2 x^{2}+8 x+1$, when it is divided by $x-\frac{1}{2}$.

दिए गए चित्र में $\mathrm{AB} \| \mathrm{CD}$ हो, तो x का मान ज्ञात कीजिए।

A point whose ordinate is -5 and abscissa is 3 will lie in which quadrant?

खण्ड-ब/SECTION - B

प्रश्न संख्या 5 से 10 तक प्रत्येक प्रश्न 2 अंक का है।
Question numbers 5 to 10 carry 2 marks each.

सरल कीजिए : $\sqrt[4]{16}-6 \sqrt[3]{343}+18 \times \sqrt[5]{243}-\sqrt{196}$
Simplify: $\sqrt[4]{16}-6 \sqrt[3]{343}+18 \times \sqrt[5]{243}-\sqrt{196}$

गुणनखंड कीजिए : $6 \sqrt{3} x^{2}-47 x+5 \sqrt{3}$

Factorise: $6 \sqrt{3} x^{2}-47 x+5 \sqrt{3}$

उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिस की भुजाएं $5 \mathrm{~cm}, 12 \mathrm{~cm}$ तथा 13 cm हैं।
Find the area of a triangle of sides $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm .

खण्ड-स / SECTION - C

प्रश्न संख्या 11 से 20 तक प्रत्येक प्रश्न 3 अंक का हैं।

Question numbers 11 to 20 carry 3 marks each.
$0.4 \overline{7}$ को $\frac{p}{q}$ के रूप में व्यक्त कीजिए, जहाँ p और q पूर्णांक है तथा $\mathrm{q} \neq 0$ है। q

Express $0.4 \overline{7}$ in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.
$0.2353535 \ldots$ को $\frac{p}{q}$, के रूप में व्यक्त कीजिए जहाँ p और q पूर्णांक हैं तथा $\mathrm{q} \neq 0$ है।

Express $0.2353535 \ldots$ in the form of $\frac{p}{q}$, where p and q are integers and $\mathrm{q} \neq 0$.

13
यदि $(x-3)$ और $\left(x-\frac{1}{3}\right), \mathrm{a} x^{2}+5 x+\mathrm{b}$, के गुणनखंड हों, तो दर्शाइए कि $\mathrm{a}=\mathrm{b}$ है। If $(x-3)$ and $\left(x-\frac{1}{3}\right)$ are both factors of $a x^{2}+5 x+b$, show that $a=b$.

दी गई आकृति में $\triangle \mathrm{ABC}$ तथा $\triangle \mathrm{ABD}$ इस प्रकार हैं कि $\mathrm{AD}=\mathrm{BC}, \angle 1=\angle 2$ तथा $\angle 3=\angle 4$ हैं। सिद्ध कीजिए कि 3 $\mathrm{BD}=\mathrm{AC}$ है।

In the figure $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ABD}$ are such that $\mathrm{AD}=\mathrm{BC}, \angle 1=\angle 2$ and $\angle 3=\angle 4$. Prove that $\mathrm{BD}=\mathrm{AC}$

चित्र में $\angle \mathrm{DBC}$ और $\angle \mathrm{ECB}$ के समद्विभाजक क्रमशः BO और CO हैं। यदि $\angle \mathrm{BAC}=70^{\circ}$ और $\angle \mathrm{ABC}=40^{\circ}$ हो, 3 तो $\angle \mathrm{BOC}$ ज्ञात कीजिए।

In the figure, BO and CO are bisectors of $\angle \mathrm{DBC}$ and $\angle \mathrm{ECB}$ respectively. If $\angle \mathrm{BAC}=70^{\circ}$ and $\angle A B C=40^{\circ}$, find the measure of $\angle B O C$.

D is a point on side $B C$ of $\triangle A B C$ (see figure), such that $A D=A C$. Show that $\mathrm{AB}>\mathrm{AD}$

In figure $\mathrm{PR}>\mathrm{PQ}$ and PS bisects $\angle \mathrm{QPR}$. Prove that $\angle \mathrm{PSR}>\angle \mathrm{PSQ}$.

वे चतुर्थांश लिखिए जहाँ पर निम्नलिखित बिंदु स्थित होंगे तथा अपने उत्तर की जाँच बिंदुओं को आलेखित करके 3 कीजिए :
$(-2,3),(5,4),(4,-2),(-2,-2)$
State the quadrants in which the following points lie and also plot the points to verify your answer :
$(-2,3),(5,4),(4,-2),(-2,-2)$

त्रिभुज का क्षेत्रफल ज्ञात कीजिए जबकि उसकी दो भुजाएँ 18 cm और 10 cm तथा परिमाप 42 cm है। तीसरी भुजा की संगत ऊँचाई ज्ञात कीजिए।
Find the area of a triangle, two sides of which are 18 cm and 10 cm and the perimeter is 42 cm . Also find the length of the altitude corresponding to the third side.

खण्ड-द/ SECTION - D

प्रश्न संख्या 21 से 31 तक प्रत्येक प्रश्न 4 अंक का है।
 Question numbers 21 to 31 carry 4 marks each.

दो कक्षा साथियों सलमा और अनिल ने दोहरान वाले समय काल में दो भिन्न-भिन्न व्यंजकों को सरल किया तथा परस्पर अपने समीकरणों को स्पष्ट किया। सलमा ने $\frac{\sqrt{2}}{\sqrt{5}+\sqrt{3}}$ के सरलीकरण को स्पष्ट किया तथा अनिल ने $\sqrt{28}+\sqrt{98}+\sqrt{147}$ के सरलीकरण को स्पष्ट किया। दोनों सरलीकरणों को लिखिए। इससे कौन-सा मूल्य प्रदर्शित होता है ?

Two classmates Salma and Anil simplified two different expressions during the revision hour and explained to each other their simplifications. Salma explains simplification of $\frac{\sqrt{2}}{\sqrt{5}+\sqrt{3}}$ and Anil explains simplifications of $\sqrt{28}+\sqrt{98}+\sqrt{147}$. Write both the simplifications. What value does depict?

मान ज्ञात कीजिए : $\{\sqrt{5+2 \sqrt{6}}\}+\{\sqrt{8-2 \sqrt{15}}\}$
Evaluate : $\{\sqrt{5+2 \sqrt{6}}\}+\{\sqrt{8-2 \sqrt{15}}\}$

गुणनखंड कीजिए : $2 x^{3}-x^{2}-4 x+3$
Factorise : $2 x^{3}-x^{2}-4 x+3$

गुणनखण्ड प्रमेय के प्रयोग से बहुपद $2 y^{3}+y^{2}-2 y-1$ के गुणनखण्ड कीजिए।

Using Factor Theorem, factorise the polynomial $2 y^{3}+y^{2}-2 y-1$.

गुणनखंड कीजिए : $(p+q)^{2}-20(p+q)-125----1$
Factorise : $(p+q)^{2}-20(p+q)-125$

यदि $x^{3}+2 x^{2}-13 x+10$ का एक गुणनखंड $x+5$ है, तो उसके अन्य गुणनखंड ज्ञात कीजिए। If $x+5$ is a factor of $x^{3}+2 x^{2}-13 x+10$, find its other factors.

दी गई आकृति में $\mathrm{AB}=\mathrm{AD}, \angle 1=\angle 2$ और $\angle 3=\angle 4$ है। सिद्ध कीजिए कि $\mathrm{AP}=\mathrm{AQ}$ है ।

In figure $\mathrm{AB}=\mathrm{AD}, \angle 1=\angle 2$ and $\angle 3=\angle 4$. Prove that $\mathrm{AP}=\mathrm{AQ}$.
सिद्ध कीजिए कि त्रिभुज के तीनों कोणों का योग 180° होता है। इस परिणाम को प्रयोग करतेहुए यदि त्रिभुज के तीन 4 कोण $(2 x-7)^{\circ},(x+25)^{\circ}$ तथा $(3 x+12)^{\circ}$ हों, तो x का मान ज्ञात कीजिए तथा तीनो कोण ज्ञान कीजिए।
Prove that the sum of three angles of a triangle is 180°. Using this result find the value of x and all the three angles if the angles are $(2 x-7)^{\circ},(x+25)^{\circ}$ and $(3 x+12)^{\circ}$

यदि दो समांतर रेखाओं को एक तिर्यक रेखा काटती है, तो सिद्ध कीजिए कि दो जोड़े अंतःकोणों के समद्विभाजकों से 4 एक आयत बनता है।
If two parallel lines are intersected by a transversal, prove that the bisectors of two pairs of interior angles encloses a rectangle.

एक समद्विबाहु त्रिभुज में यदि शीर्ष कोण, दोनों आधार कोणों के योग का दुगुना हो, तो त्रिभुज के सभी कोण ज्ञात 4 कीजिए।
In an isosceles triangle, if the vertex angle is twice the sum of the base angles, calculate the angles of the triangle.

आकृति में $\mathrm{AB}=\mathrm{AC}, \mathrm{CH}=\mathrm{CB}$ और $\mathrm{HK} \| \mathrm{BC}$ है। यदि $\angle \mathrm{CAX}=137^{\circ}$ हो, तो $\angle \mathrm{CHK}$ ज्ञात कीजिए।

In figure $A B=A C, C H=C B$ and $H K \| B C$. If $\angle C A X=137^{\circ}$ then find $\angle C H K$.

JSTITIL
 ACBSE Coaching for O(athematics and Science

 MARKING SCHEME

 MARKING SCHEME

 SUMMATIVE ASSESSMENT - I, 2013

 SUMMATIVE ASSESSMENT - I, 2013

 MATHEMATICS Class - IX

 MATHEMATICS Class - IX

 SECTION - A

 SECTION - A}

Question numbers 1 to 4 carry 1 mark each.

1
$(14641)^{0.25}=(14641)^{\frac{0.05}{1.00}}=(14641)^{\frac{1}{4}}=(11 \times 11 \times 11 \times 11)^{\frac{1}{4}}=11$
$2 \quad 4$
3 (C) \qquad
IV

SECTION - B

Question numbers 5 to 10 carry 2 marks each.
Given expression $=\left(2^{4}\right)^{\frac{1}{4}}-6 \times\left(7^{3}\right)^{\frac{1}{3}}+18 \times\left(3^{5}\right)^{\frac{1}{5}}-\left(14^{2}\right)^{\frac{1}{2}}$

$$
\begin{aligned}
& =2-6 \times 7+18 \times 3-14 \\
& =2-42+54-14=0
\end{aligned}
$$

6

$$
\begin{align*}
6 \sqrt{3} x^{2} & -47 x+5 \sqrt{2} \\
& =6 \sqrt{3} x^{2}-2 x-45 x+5 \sqrt{3} \\
& =2 x(3 \sqrt{3} x-1)-5 \sqrt{3}(3 \sqrt{3} x-1) \\
& =(3 \sqrt{3} x-1)(2 x-5 \sqrt{3})
\end{align*}
$$

$7 \quad \mathrm{AB}=\mathrm{BC}$
$A X+X B=B Y+Y C$
$A X=C Y(Q B X=B Y)$ Axiom If equals are subtracted from equal the remainders are equal.
8

ABCD is a quadrilateral join AC .
In $\triangle \mathrm{ABC}, \angle 1+\angle \mathrm{B}+\angle 2=180^{\circ}$$1 / 2$

In $\triangle \mathrm{ACD}, \angle 3+\angle \mathrm{D}+\angle 4=180^{\circ}$
(ii)$1 / 2$

Adding (i) and (ii)
$(\angle 1+\angle 4)+\angle \mathrm{B}+(\angle 2+\angle 3)+\angle \mathrm{D}=360^{\circ}$
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ}$
Hence sum of four angles of a quadrilateral $=360^{\circ}$ \qquad
$9 \quad$ Perimeter $=42 \mathrm{~cm}$1
$a=13 \mathrm{~cm}, \mathrm{~b}=14 \mathrm{~cm} \therefore \mathrm{c}=42-(13+14)$
ie. $\mathrm{c}=15 \mathrm{~cm}$
$\mathrm{s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}=21 \mathrm{~cm}$
Area $=\sqrt{\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}=84 \mathrm{~cm}^{2}$
10
$\mathrm{s}=\frac{5+12+13}{2}=15$
Area $=\sqrt{15 \times 10 \times 3 \times 2}=30 \mathrm{~cm}^{2}$

SECTION - C

Question numbers 11 to 20 carry 3 marks each.
11 Let $x=0.4 \overline{7}$
$=0.47777$.....
$10 x=4.7777$
$100 x=47.7777$
(2) $-(1) \Rightarrow 90 x=43 \quad x=\frac{43}{90}$

Let $x=0.2353535$.......
$\therefore 100 x=23.53535 \ldots \ldots$.
$100 x-x=23.53535-0.23535$
$99 x=23.3$
$x=\frac{23.3}{99}$
$x=\frac{233}{990}$
Hence $0 . \overline{235}=\frac{233}{990}$ where $\mathrm{p} \times \mathrm{q}$ are integers and $\mathrm{q} \neq 0$.
$p(3)=0 \Rightarrow 9 a+b=-15$ Chase ExCelence
$p\left(\frac{1}{3}\right)=0 \Rightarrow a+9 b=-15$
Solving $\mathrm{a}=\mathrm{b}=-\frac{3}{2}$

$$
\begin{aligned}
& g(x)=x^{2}-1=(x+1)(x-1) \\
& f(1)=1+a+2-3+b=0 \\
& \Rightarrow a+b=0 \\
& f(-1)=1-a+2+3+b \\
& \Rightarrow a-b=6 \\
& a+b=0
\end{aligned}
$$

$a=3, b=-3$
$\angle 1=\angle 2, \angle 3=\angle 4$
$\therefore \quad \angle 1+\angle 3=\angle 2+\angle 4$
$\Rightarrow \quad \angle \mathrm{DAB}=\angle \mathrm{CBA}$
$\triangle D A B \cong C B A-(S A S)$
$\therefore \quad \mathrm{BD}=\mathrm{AC}-$ (CPCT)
$\angle \mathrm{DBC}=180^{\circ}-40$ (Linear Pair)
$=140^{\circ}$
$\angle \mathrm{CBO}=\frac{1}{2} \angle \mathrm{DBC}=\frac{1}{2} \times 140=70^{\circ}$
$\angle \mathrm{ACB}=180^{\circ}-\left(70^{\circ}+40\right)=70$
$\angle \mathrm{BCE}=180^{\circ}-70^{\circ}=110^{\circ}$ (Linear Pair)
$\angle \mathrm{BCO}=\frac{1}{2} \times 110^{\circ}=55^{\circ}$ (Angle bisector)
$\angle \mathrm{BOC}=180^{\circ}-(\angle \mathrm{CBO}+\angle \mathrm{BCO})$

$$
=180^{\circ}-\left(70+55^{\circ}\right) \quad=55^{\circ}
$$

$\therefore A D=A C$ (see figure)
\therefore In $\triangle A D C, \angle A D C=\angle A C D$
Now $\angle A D C$ is ext. angle of $\triangle A B D$
$\therefore \angle \mathrm{ADC}=\angle \mathrm{ABD}+\angle \mathrm{BAD}$
$\therefore \angle \mathrm{ADC}>\angle \mathrm{ABD}$
Or $\angle A C D>\angle A B D$
\therefore or $\angle A C B>\angle A B C$
$\therefore A B>A C$ But $A C=A D \therefore A B>A D$ (Proved)

$\angle \mathrm{PQS}>\angle \mathrm{PRS}$
$\angle \mathrm{QPS}=\angle \mathrm{SPR}=\frac{1}{2} \angle \mathrm{P}$
In $\triangle \mathrm{PQS}$
$\frac{1}{2} \angle \mathrm{P}+\angle \mathrm{PQS}+\angle \mathrm{PSQ}=180^{\circ}$
$\angle \mathrm{PSQ}=\left(180-\frac{1}{2} \angle \mathrm{P}\right)-\angle \mathrm{PQS}$
In \triangle PSR
$\angle \mathrm{PSR}=\left(180-\frac{1}{2} \angle \mathrm{P}\right)-\angle \mathrm{PRS}$
(1), (2) and (3) $\Rightarrow \angle \mathrm{PSR}>\angle \mathrm{PSQ}$

Plotting points in co-ordinate system

$$
\mathrm{s}=21 \mathrm{~cm} \text { third side }=14 \mathrm{~cm}
$$

$$
\Delta=\sqrt{21(21-18)(21-10)(21-14)}
$$

$$
=21 \sqrt{11} \mathrm{~cm}^{2}
$$

$$
\frac{1}{2} \times 14 \times \mathrm{h}=21 \sqrt{11} \Rightarrow \mathrm{~h}=3 \sqrt{11} \mathrm{~cm}
$$

SECTION - D

Question numbers 21 to 31 carry 4 marks each.

$$
\begin{aligned}
& \frac{\sqrt{2}}{\sqrt{5}+\sqrt{3}}=\frac{\sqrt{2}}{\sqrt{5}+\sqrt{3}} \times \frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}-\sqrt{3}} \\
& \quad=\frac{\sqrt{2}(\sqrt{5}-\sqrt{3})}{2}=\frac{\sqrt{10}-\sqrt{6}}{2} \\
& 2 \sqrt{7}+\sqrt{98}+\sqrt{147}=\sqrt{4 \times 7}+\sqrt{49 \times 2}+\sqrt{49 \times 3}=2 \sqrt{7}+7 \sqrt{2}+7 \sqrt{3}
\end{aligned}
$$

Value : cooperative learning among classmates without any gender and religious bias.

$$
\begin{aligned}
& \sqrt{5+2 \sqrt{6}}=\sqrt{(\sqrt{3})^{2}+(\sqrt{2})^{2}+2 \sqrt{3} \sqrt{2}}=\sqrt{(\sqrt{(\sqrt{3})+\sqrt{2}})^{2}}=\sqrt{3}+\sqrt{2} \\
& \sqrt{8-2 \sqrt{15}}=\sqrt{5+3-2 \sqrt{15}}=\sqrt{\sqrt{5}+\sqrt{3}-2 \sqrt{5} \sqrt{3}}=\sqrt{5}-\sqrt{3} \\
& =\sqrt{3}+\sqrt{2}+\sqrt{5}-\sqrt{3}=\sqrt{2}+\sqrt{5}
\end{aligned}
$$

23 The factors of 3 are $\pm 1, \pm 3$

$$
(x-1) \text { is a factor of } 2 x^{3}-x^{2}-4 x+3
$$

$$
\begin{aligned}
2 x^{3}-x^{2}-4 x+3 & =2 x^{3}-2 x^{2}+x^{2}-x-3 x+3 \\
& =(x-1)\left[2 x^{2}+x-3\right] \\
& =(x-1)(x-1)(2 x+3)
\end{aligned}
$$

$\mathrm{p}(y)=2 y^{3}+y^{2}-2 y-1$
$p(1)=2(1)^{3}+(1)^{2}-2(1)-1$
$=2+1-2-1$
$=0$
$\Rightarrow y=1$ is a factor
$2 y^{3}+y^{2}-2 y-1 \div y-1=2 y^{2}+3 y+1$
$2 y^{2}+3 y+1=(2 y+1)(y+1)$
$\therefore \mathrm{p}(y)=(y-1)(2 y+1)(y+1)$
25
On putting $(p+q)^{2}=a$ in (1) we get

$$
\begin{aligned}
(p+q)^{2} & -20(p+q)-125=a^{2}-20 a-125 \\
& =a^{2}+5 a-25 a+(-25)(5) \\
& =\left(a^{2}+5 a\right)+[-25 a+(-25)(5)]
\end{aligned}
$$

$$
\begin{align*}
& =a(a+5)-25(a+5) \\
& =(a+5)(a-25) \tag{2}
\end{align*}
$$

\qquad
Replacing ' a ' by $(p+q)$ on both sides of (2), we get

$$
(p+q)^{2}-20(p+q)-125=(p+q+5)(p+q-25)
$$

26 To get the other factors, divide $x^{3}+2 x^{2}-13 x+10$ by $x+5$.
correct proof

$$
\begin{gathered}
2 x-7+x+25+3 x+12=180^{\circ} \\
6 x=150 \quad \Rightarrow x=25
\end{gathered}
$$

\therefore The angles are $43^{\circ}, 50^{\circ}, 87^{\circ}$
29 Here $l|\mid \mathrm{m}$ and n is a transversal E G, F G, F H and E H are the bisectors of the interior angles.
$\Rightarrow \frac{1}{2} \angle \mathrm{AEF}=\frac{1}{2} \angle \mathrm{EFD} \Rightarrow \angle \mathrm{GEF}=\angle \mathrm{EFH}$
But they are alternate angles.
Thus EG||FH
Similarly FG $\|$ EH.
\Rightarrow EGFH is a parallelogram \qquad
Again $\angle \mathrm{AEF}+\angle \mathrm{BEF}=180^{\circ} \quad$ (Linear pair)
$\Rightarrow \frac{1}{2} \angle \mathrm{AEF}+\frac{1}{2} \angle \mathrm{BEF}=90^{\circ}$
$\Rightarrow \angle \mathrm{GEF}+\angle \mathrm{HEF}=90^{\circ}$
$\Rightarrow \angle \mathrm{GEH}=90^{\circ}$
\therefore EGFH is a rectangle

30 Let ABC is isosceles triangle such that $\mathrm{AB}=\mathrm{AC}$
$\Rightarrow \angle \mathrm{B}=\angle \mathrm{C}=x$ (say)
$\angle \mathrm{A}=2(\angle \mathrm{~B}+\angle \mathrm{C})$ (given)

$$
=4 x
$$

In $\triangle \mathrm{ABC}$
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$ Chase Excellence
$4 x+x+x=180^{\circ}$
$x=30^{\circ} \Rightarrow \angle \mathrm{A}=120^{\circ}, \angle \mathrm{B}=30^{\circ}, \angle \mathrm{C}=30^{\circ}$
$31 \quad \angle \mathrm{XAK}+\angle \mathrm{KAH}=180^{\circ}$ (LP)
$\angle \mathrm{KAH}=180^{\circ}-137^{\circ}=43^{\circ}$
$\mathrm{AB}=\mathrm{AC}$
$\angle \mathrm{ABC}=\angle \mathrm{ACB}=\frac{137}{2}=68.5^{\circ}$ \qquad
$\mathrm{CH}=\mathrm{CB}$
$\Rightarrow \angle \mathrm{CBA}=\angle \mathrm{CHB}=68.5^{\circ}$
$\therefore \angle \mathrm{HCB}=180^{\circ}-137^{\circ}=43^{\circ}$
$\angle \mathrm{CHK}=\angle \mathrm{HCB}=43^{\circ}$ (alternate angles) .. 1

