संकलित परीक्षा - II, (2013-2014)
SUMMATIVE ASSESSMENT - II
MATHEMATICS / गणित
Class - IX / कक्षा - IX

निर्धारित समय :3-3 $1 \frac{1}{2}$ घण्टे
Time allowed : 3-3 $1 / 2$ hours

अधिकतम अंक : 100
Maximum Marks : 100

सामान्य निर्देश :

(i) सभी प्रश्न अनिवार्य हैं।
(ii) इस प्रश्न पत्र में 32 प्रश्न हैं, जिन्हें पाँच खण्डों अ, ब, स, द तथा य में बांटा गया है। खण्ड-अ में 4 प्रश्न हैं जिनमें प्रत्येक 1 अंक का है, खण्ड-ब में 6 प्रश्न हैं जिनमें प्रत्येक के 2 अंक हैं, खण्ड-स में 10 प्रश्न हैं जिनमें प्रत्येक के 3 अंक हैं, खण्ड-द में 11 प्रश्न हैं जिनमें प्रत्येक के 4 अंक हैं तथा खण्ड-य का प्रश्न मुक्त पाठ्य प्रकरण पर आधारित दस अंकों का है ।
(iii) इस प्रश्न पत्र में कोई भी सर्वोपरि विकल्प नहीं है।
(v) कैलकुलेटर का प्रयोग वर्जित है।

General Instructions:

(i) All questions are compulsory.
(ii) The question paper consists of $\mathbf{3 2}$ questions divided into five sections A, B, C, D and E. Section-A comprises of $\mathbf{4}$ questions of $\mathbf{1}$ mark each, Section-B comprises of $\mathbf{6}$ questions of $\mathbf{2}$ marks each, Section-C comprises of $\mathbf{1 0}$ questions of $\mathbf{3}$ marks each and Section-D comprises of 11 questions of 4 marks each. Section E comprises of one question from Open Text theme of $\mathbf{1 0}$ marks.
(iii) There is no overall choice.
(iv) Use of calculator is not permitted.

प्रश्न संख्या 1 से 4 में प्रत्येक का 1 अंक है।
Question numbers $\mathbf{1}$ to $\mathbf{4}$ carry one mark each

समीकरण $0 x+3 y-7=0$ का एक हल ज्ञात कीजिए।
Find one solution of the equation $0 x+3 y-7=0$.

समीकरण $2 x=9$ को दो चर वाले रैखिक समीकरण के मानक रूप में लिखिए।
Write the equation $2 x=9$, in the standard form of a linear equation in two variables.

ABCD एक समांतर चतुर्भुज है, जिसमें $\angle \mathrm{ADC}=75^{\circ}$ है तथा भुजा AB को बिंदु E तक आकृति में दर्शाए अनुसार 1 बढ़ाया गया है। $(x+y)$ ज्ञात कीजिए।

ABCD is a parallelogram in which $\angle \mathrm{ADC}=75^{\circ}$ and side AB is produced to point E as shown in the figure. Find $(x+y)$.

उस घन की भुजा ज्ञात कीजिए, जिसका संपूर्ण पृष्ठीय क्षेत्रफल $486 \mathrm{~cm}^{2}$ है।
Find the side of a cube of its total surface area is $486 \mathrm{~cm}^{2}$.

प्रश्न संख्या 5 से 10 में प्रत्येक का 2 अंक है।
Question numbers $\mathbf{5}$ to $\mathbf{1 0}$ carry two marks each.

दी हुई आकृति में, केंद्रों O और O^{\prime} वाले दो वृत्त A और B पर प्रतिच्छेद करते हैं। AC और AD क्रमशः इन दोनों 2 वृत्तों के व्यास हैं। सिद्ध कीजिए कि बिंदु C, B और D संरेखी है।

In the given figure, two circles with centres O and O^{\prime} intersect at A and $B . A C$ and $A D$ are respectively the diameters of the two circles. Prove that the points C, B and D are collinear.

दी हुई आकृति में, O बिंदुओं $\mathrm{A}, \mathrm{B}, \mathrm{C}$ और D से होकर जाने वाले वृत्त का केंद्र है तथा DC को एक बिंदु E तक 2 बढ़ाया गया है। यदि $\angle \mathrm{BAD}=60^{\circ}$ है, तो $\angle \mathrm{BCE}$ और $\angle \mathrm{BOD}$ ज्ञात कीजिए।

In the given figure, O is the centre of the circle passing through the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D and $D C$ is produced to a point E . If $\angle \mathrm{BAD}=60^{\circ}$ find $\angle \mathrm{BCE}$ and $\angle \mathrm{BOD}$.

आकृति में, ABCD एक वर्ग है तथा $\mathrm{EF} \| \mathrm{BD}$ है। सिद्ध कीजिए कि $\mathrm{BE}=\mathrm{DF}$ है।

In the figure ABCD is a square and $\mathrm{EF} \| \mathrm{BD}$. Prove that $\mathrm{BE}=\mathrm{DF}$.

9 दंड आलेख को परिभाषित कीजिए।
Define a Bar Graph.

किसी विशिष्ट प्रश्न के सही उत्तर का अनुमान लगाने की प्रायिकता $\frac{x}{2}$ है। यदि सही उत्तर का अनुमान नहीं लगाने की

The probability of guessing the correct answer to a certain question is $\frac{x}{2}$. If probability of not guessing the correct answer is $\frac{2}{3}$, then find x.

खण्ड-स / SECTION-C

प्रश्न संख्या 11 से 20 में प्रत्येक का $\mathbf{3}$ अंक है।
Question numbers $\mathbf{1 1}$ to $\mathbf{2 0}$ carry three marks each.

दो चर वाले रैखिक समीकरण $5 x-3 y=10$ के तीन हल ज्ञात कीजिए। इसका आलेख भी खींचिए। Find three solutions of $5 x-3 y=10$ linear equation in two variables. Also draw its graph.
$A B C D$ एक वर्ग है। A और C के निर्देशांक क्रमशः $(-1,-1)$ और $(1,1)$ हैं। B और D के निर्देशांक 3 लिखिए। वर्ग की सभी भुजाओं के लिए समीकरण लिखिए।
$A B C D$ is a square. Coordinates of A and C are $(-1,-1)$ and $(1,1)$ respectively. Write coordinates of B and D. Also write equations of all the sides of the square.
$\triangle \mathrm{PQR}$ की रचना कीजिए, जिसमें $\angle \mathrm{Q}=105^{\circ}, \angle \mathrm{R}=30^{\circ}$ और परिमाप 12.5 cm है।
Construct $\triangle \mathrm{PQR}$ in which $\angle \mathrm{Q}=105^{\circ}, \angle \mathrm{R}=30^{\circ}$ and its perimeter is 12.5 cm .
$A B C D$ एक समांतर चतुर्भुज है तथा $A B$ को X तक इस प्रकार बढ़ाया गया है कि $A B=B X$ है, जैसा कि आकृति में दर्शाया गया है। दर्शाइए कि DX और BC परस्पर O पर समद्विभाजित करते हैं।

$A B C D$ is a parallelogram and $A B$ is produced to X such that $A B=B X$ as shown in the figure . Show that DX and BC bisect each other at O.

त्रिज्याओं 10 cm और 8 cm वाले दो वृत्त दो बिंदुओं पर प्रतिच्छेद करते हैं तथा उभयनिष्ठ जीवा की लंबाई 12 cm है। 3 उनके केन्द्रों के बीच की दूरी ज्ञात कीजिए।
Two circles of radii 10 cm and 8 cm intersect at two points and the length of the common chord is 12 cm . Find the distance between their centres.

6 MNOP एक समांतर चतुर्भुज है। विकर्ण $P N$ पर कोई बिंदु Q है। दर्शाइए कि 3 $\operatorname{ar}(\triangle \mathrm{MNQ})=\operatorname{ar}(\triangle \mathrm{QON})$ है।

MNOP is a parallelogram. Q is any point on diagonal PN. Show that $\operatorname{ar}(\triangle \mathrm{MNQ})=\operatorname{ar}(\triangle \mathrm{QON})$.

$\triangle \mathrm{PQR}$ में भुजा QR का मध्य-बिंदु X है। XM और XN क्रमशः भुजाओं PQ और PR पर लम्ब खींचे गए हैं। यदि 3 $\mathrm{PQ}=\mathrm{PR}$ है, तो दर्शाइए कि $\operatorname{ar}(\triangle \mathrm{QMX})=\mathrm{ar}(\triangle \mathrm{NXR})$ है।

In $\triangle P Q R, X$ is the mid - point of $Q R . X M$ and $X N$ are perpendiculars to sides $P Q$ and $P R$ respectively. If $P Q=P R$, show that ar $(\triangle \mathrm{QMX})=\operatorname{ar}(\triangle \mathrm{NXR})$.

एक 2 m भुजा वाला घनाकार टैंक पानी से भरा हुआ है। इस पानी को एक घनाभाकार टैंक में डाला गया, जिसकी लम्बाई, चौड़ाई और ऊँचाई क्रमश: $250 \mathrm{~cm}, 200 \mathrm{~cm}$ और 2 m हैं। यह टैंक कितनी गहराई तक खाली होगा ?

A cubical tank whose side is 2 m is filled with water. The water from cubical tank is shifted to a cuboidal tank whose length, breadth and height are $250 \mathrm{~cm}, 200 \mathrm{~cm}$ and 2 m respectively. Find the depth of tank which will remain empty.

दो सिक्कों को एक साथ 360 बार उछाला जाता है। 2 पट आने की संख्या, कोई पट नहीं आने की संख्या का तीन गुनी 3 थी तथा 1 पट आने की संख्या, कोई पट नहीं आने की संख्या की दो गुनी है। दो पट प्राप्त करने की प्रायिकता ज्ञात कीजिए।

Two coins are tossed simultaneously for 360 times. The number of times ' 2 Tails' appeared was three times 'No. Tail' appeared and number of times ' 1 tail' appeared is double the number of times 'No Tail' appeared. Find the probability of getting 'Two tails'.

नीचे दिए गए आयतचित्र का प्रयोग करते हुए, एक वर्गीकृत बारंबारता बंटन सारणी तैयार कीजिए।

Using the following histogram prepare a grouped frequency distribution table :

Time (In Minutes)

खण्ड-द / SECTION-D

प्रश्न संख्या 21 से 31 में प्रत्येक का 4 अंक है।
Question numbers $\mathbf{2 1}$ to $\mathbf{3 1}$ carry four marks each.

एक विद्यार्थी ने, नीचे दिए आलेख में खींची गई रेखाओं a और b की समीकरण $y=1$ और $2 x+3 y=6$ लिखीं। क्या 4 वह सही है ? रेखाओं a और b के प्रतिच्छेद बिंदु के निर्देशांक लिखिए।

इन रेखओं और y अक्ष के बीच घिरा क्षेत्रफल भी ज्ञात कीजिए।
A student wrote the equations of the lines a and b drawn in the following graph as $y=1$ and $2 x+3 y=6$. Is he right ? If yes, write coordinates of point of intersection lines a and b.

Also, find the area enclosed between these lines and y-axis.

फाहरेनहाइट (F) और सेल्सियस (C) तापमानों की दो भिन्न-भिन्न इकाइयाँ हैं तथा इनके बीच में संबंध $C=\frac{5}{9}$ ($F-32$) द्वारा दिया जाता है। इस सूचना को, y-अक्ष पर F और x-अक्ष पर C लेकर, एक आलेख द्वरा निरूपित कीजिए। साथ ही, उस तापमान का संख्यात्मक मान ज्ञात कीजिए जो फाहरेनहाइट और सेल्सियस में समान है।

Fahrenheit (F) and Celsius (C) are two different units of temperatures and relation between them is given by $C=\frac{5}{9}$ ($F-32$).

Represent this data in a graph taking F on y-axis and C on x-axis. Also, find the value of the temperature which is numerically the same in both Fahrenheit and Celsius.

दो टीमों के बीच एक मैत्रीपूर्ण क्रिक्ट मैच आयोजित किया जा रहा है। इस मैच से प्राप्त होने वाली धनराशि को 4 विकलांग बच्चों के हेतु बने 'धर्मार्थ अस्पताल' की सहायता के लिए दे दिया जाएगा। खेल का मैदान वृत्ताकार है, जिसमें, आकृति में दर्शाए अनुसार, दर्शकों के लिए एक एक समान चौड़ाई का वलय छोड़ा गया है। यदि O मैदान का केन्द्र है तथा एक सरल रेखा में स्थित बिन्दुओं $\mathrm{A}, \mathrm{B}, \mathrm{C}$ और D पर चार स्तंभ गाड़े जाते हैं, तो सिद्ध कीजिए कि $\mathrm{AB}=\mathrm{CD}=\frac{1}{2}(\mathrm{AD}-\mathrm{BC})$ है। इस प्रश्न के द्वारा कौन से मूल्य को बढ़ावा दिया जा रहा है ?

A friendly cricket match is being organized between two teams. The proceeds of this match will be given for the aid to the 'Charitable Hospital' for handicapped children. The field is circular with a ring of uniform width as shown in the figure for spectators. If O is the centre of the field and four poles are fixed at points A, B, C and D lying in a straights line. Prove that $A B=C D=\frac{1}{2}(A D-B C)$. Which value is promoted through this question?

कोई न्यून कोण बनाइए। रूलर और परकार की सहायता से इसके चार समान भाग कीजिए। कोणमापक की सहायता से 4 इनको मापिए।

Draw any acute angle. Divide it into four equal parts using ruler and compass. Measure them using protractor.
$A B C D$ एक पतंग है, जिसमें $A B=A D$ और $C D=C B$ है। दर्शाइए कि इसकी क्रमागत भुजाओं के मध्य-बिंदुओं को 4 मिलाने से बना चतुर्भुज एक आयत है।
$A B C D$ is a kite with $A B=A D$ and $C D=C B$. Prove that the figure formed by joining the mid - points of the consecutive sides, is a rectangle.

दी हुई आकृति में, जीवाएँ AB, BC और CD बराबर हैं तथा O वृत्त का केन्द्र है। यदि $\angle \mathrm{ABC}=120^{\circ}$ है, तो निम्न 4 के माप ज्ञात कीजिए :
(i) $\angle \mathrm{BAC}$
(ii) $\angle B E C$
(iii) $\angle \mathrm{BED}$
(iv) $\angle C O D$

In the given figure, chords $A B, B C$ and $C D$ are equal and O is the centre of the circle. If $\angle \mathrm{ABC}=120^{\circ}$, find the measure of
(i) $\angle B A C$
(ii) $\angle \mathrm{BEC}$
(iii) $\angle C O D$
(iv) $\angle \mathrm{BOD}$

27
एक गोले की त्रिज्या 14 cm है। यदि त्रिज्या को 50% बढ़ा दिया जाए, तो आयतन में कितने प्रतिशत वृद्धि हो जाएगी? 4 The radius of a sphere is 14 cm . If the radius be increased by 50%, find by how much percent its volume is increased.

28 एक लंब वृत्तीय बेलन का आयतन $78848 \mathrm{~cm}^{3}$ है। इसका व्यास 56 cm है। संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
Volume of a right circular cone is $78848 \mathrm{~cm}^{3}$. It diameter is 56 cm . Find its total surface area.

एक बेलन की त्रिज्या और ऊँचाई $4: 7$ के अनुपात में हैं। यदि आयतन 1188 घन सेंटीमीटर हो, तो बेलन की त्रिज्या 4 और ऊँचाई ज्ञात कीजिए।

The radius and height of a cylinder are in the ratio $4: 7$. Find the radius and height of the cylinder if its volume is 1188 cu cm .

विभिन्न आयु वर्गों के 2000 व्यक्तियों का सर्वे किया गया और उनके द्वारा देखी जाने वाली विभिन्न प्रकार की पिक्चरें चुनने की जानकारी ली गई :

टाइप । प्रकार : पारिवारिक
टाइप II प्रकार : कामेडी और पारिवारिक
टाइप III प्रकार : रोमैन्टिक, कामेडी और पारिवारिक

टाइप IV प्रकार : एक्शन, रोमैन्टिक, कामेडी और पारिवारिक

आयु वर्ग	टाइप I	टाइप II	टाइप III	टाइप IV	सभी
$18-29$	440	160	110	61	35
$30-50$	505	125	60	22	18
50 से ऊपर	360	45	35	15	9

प्रायिकता ज्ञात कीजिए कि यदृच्छया चुना गया व्यक्ति :
(a) 18-29 वर्ष की आयु का है और उसे टाइप II पिक्चर पसंद है।
(b) 50 वर्ष से ऊपर की आयु का है और उसे सभी प्रकार की पिक्चर पसंद हैं।
(c) 30-50 वर्ष की आयु का है और उसे टाइप । की पिक्चर पसंद है।

A survey of 2000 people of different age groups was conducted to find out their preference in watching different types of movies :

Type I \rightarrow Family
Type II \rightarrow Comedy and Family
Type III \rightarrow Romantic, Comedy and Family
Type IV \rightarrow Action, Romantic, Comedy and Family

Age Group	Type I	Type II	Type III	Type IV	All
$18-29$	440	160	110	61	35
$30-50$	505	125	60	22	18
Above 50	360	45	35	15	9

Find the probability that a person chosen at random is :
(a) in 18-29 years of age and likes type II movies
(b) above 50 years of age and likes all types of movies
(c) in 30-50 years and likes type I movies.

35 प्रेषणों का माध्य 75 है। यदि प्रथम 18 प्रेषणों का माध्य 70 और बाद के 18 प्रेषणों का माध्य 80 है, तो 4 18 वाँ प्रेषण ज्ञात कीजिए।

Mean of 35 observations is 75 . If the mean of first 18 observations is 70 and the mean of last 18 observations in 80 , find the 18th observation.

खण्ड-य / SECTION-E
(मुक्त पाठ /Open Text)
(* Please ensure that open text of the given theme is supplied with this question paper.)

Marking Scheme

SUMMATIVE ASSESSMENT - II
Mathematics (Class - IX)

खण्ड-अ / SECTION-A

प्रश्न संख्या 1 से 4 में प्रत्येक का 1 अंक है।
Question numbers $\mathbf{1}$ to $\mathbf{4}$ carry one mark each

$$
\begin{aligned}
& y=\frac{7}{3} \\
& \left(0, \frac{7}{3}\right),\left(1, \frac{7}{3}\right) \text { any one. }
\end{aligned}
$$

3

$x+75^{\circ}=180^{\circ}($ Adjacent angles of 2 gm)

So, $x=180^{\circ}-75^{\circ}=105^{\circ}$

Also $y=x=105^{\circ}$ (Alternate interior angles)
So, $x+y=105^{\circ}+105^{\circ}=210^{\circ}$

9 cm

खण्ड-ब / SECTION-B

प्रश्न संख्या 5 से 10 में प्रत्येक का $\mathbf{2}$ अंक है।
Question numbers $\mathbf{5}$ to $\mathbf{1 0}$ carry two marks each.

Proof : In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}$ (angle of semicircle)
In $\triangle \mathrm{ABD}, \angle \mathrm{ABD}=90^{\circ}$ (angle of semi circle)
$\angle \mathrm{CBD}=\angle \mathrm{ABC}+\angle \mathrm{ABD}=90^{\circ}+90^{\circ}=180^{\circ}$
\therefore By linear pair axiom CBD is a straight line
i.e. C, B and D are collinear
$6 \quad \angle \mathrm{BCE}=\angle \mathrm{BAD}$ (Ext. angle of cyclic quad is equal to its interior opp angle)
$=60^{\circ}$
$\angle \mathrm{BOD}=2 \angle \mathrm{BAD}$ (angle at the centre is twice the angle at the circumference)
$=120^{\circ}$

7

In square ABCD , diagonal bisects $\angle \mathrm{B}$ and $\angle \mathrm{D}$ and each angle $=90^{\circ}$
$\therefore \quad \angle 1=\angle 2=45^{\circ}$ \qquad
Q $\quad \mathrm{EF}|\mid \mathrm{BD}$ (Given).
$\therefore \quad \angle 1=\angle 3$------(ii) and $\angle 2=\angle 4$-----(iii) (corresponding $\angle '$ s)
From (i) (ii) and (iii),

$$
\begin{array}{ll}
\therefore & \angle 3=\angle 4 \\
\therefore & C E=C F \text { (sides opposite to equal angles) } \\
& B C=C D \text { (sides of square are equal) } \\
\therefore & B C-C E=C D-C F \\
\text { i.e, } & B E=D F
\end{array}
$$

$$
\begin{aligned}
& =\frac{22}{7} \times(10.5)^{2} \times 60 \\
& =20790 \mathrm{~cm}^{3}
\end{aligned}
$$

Mass of the cylinder $=$ Volume \times density

$$
\begin{aligned}
& =20790 \times 5 \\
& =103950 \mathrm{gm} \\
& =103.95 \mathrm{~kg}
\end{aligned}
$$

Bar Graph : It is a statistical tool used to represent the organized data using bars of uniform width drawn either horizontally on vertically with equal spacing between them. The length of each bar gives the required information.

Let $P(E)$ be Prob. of occurrence of Event and $P(\overline{\mathrm{E}})$ be probability of Non - occurrence of event

So, $\mathrm{P}(\mathrm{E})+\mathrm{P}(\overline{\mathrm{E}})=1$

Here, $\mathrm{P}(\mathrm{E})=\frac{x}{2}$

$$
\mathrm{P}(\overline{\mathrm{E}})=\frac{2}{3}
$$

So, $\frac{x}{2}+\frac{2}{3}=1$
$\Rightarrow \frac{x}{2}=1-\frac{2}{3}=\frac{1}{3}$
$\Rightarrow x=\frac{2}{3}$

खण्ड-स / SECTION-C

प्रश्न संख्या 11 से 20 में प्रत्येक का 3 अंक है।
Question numbers $\mathbf{1 1}$ to $\mathbf{2 0}$ carry three marks each.

11

$$
\begin{aligned}
& 5 x-3 y=10 \\
& y=\frac{5 x-10}{3}
\end{aligned}
$$

x	2	5	8
y	0	5	10

Graph
$B(1,-1)$
$D(-1,1)$
$A B: y=-1$
$B C: x=1$
$C D: y=1$
$D A: x=-1$

Construction (2)
Steps of construction (1)
$14 \quad \mathrm{AB}=\mathrm{BX}$ (Given)

But,

$$
\mathrm{AB}=\mathrm{CD}(\text { Opposite sides of } \| \mathrm{gm})
$$

$\therefore \mathrm{BX}=\mathrm{CD}$

In $\triangle \mathrm{OBX}$ and $\triangle \mathrm{OCD}$,
$\angle \mathrm{OBX}=\angle \mathrm{OCD}$ (Alternate interior \angle 's)
$\angle \mathrm{XOB}=\angle \mathrm{DOC}$ (Vertically Opposite \angle 's)
$B X=C D$ (Proved above)
$\Delta \mathrm{OBX} \cong \Delta \mathrm{OCD}($ By AAS Congruence rule)
$\therefore \mathrm{OB}=\mathrm{OC}$ (By cpct)
and $\mathrm{OX}=\mathrm{OD}$ (By cpct)
$\therefore \mathrm{DX}$ and BC bisect each other at O .

Line joining the centres is the perpendicular bisector of the common chord
$\therefore \mathrm{AC}=\mathrm{BC}=\frac{1}{2} \mathrm{AB}=6 \mathrm{~cm}$
$\angle \mathrm{ACO}=\angle \mathrm{ACO}^{\prime}=90^{\circ}$
In $\triangle \mathrm{ACO}, \mathrm{OC}^{2}=\mathrm{OA}^{2}-\mathrm{AC}^{2}$ (Pythagoras theorem)
$=10^{2}-6^{2}$
$=100-36=64$
$\therefore \mathrm{OC}=8 \mathrm{~cm}$
In $\triangle \mathrm{ACO}^{\prime}, \mathrm{O}^{\prime} \mathrm{C}^{2}=\mathrm{O}^{\prime} \mathrm{A}^{2}-\mathrm{AC}^{2}$
$=8^{2}-6^{2}$
$=64-36=28$
$\mathrm{O}^{\prime} \mathrm{C}=2 \sqrt{7} \mathrm{~cm}$
\therefore distance between the centres of the two circles is $(8+2 \sqrt{7}) \mathrm{cm}$.

16

Join OM.
MNOP is a || gm
\therefore Diagonals PN and MO bisect each other.
So, $M X=X O$
Now, MX = XO,
$\therefore \mathrm{QX}$ acts a median to $\triangle \mathrm{QMO}$
So, $\operatorname{ar}(\triangle \mathrm{QMX})=\operatorname{ar}(\triangle \mathrm{QOX})$
[\because median divides a triangle into two triangles of equal areas.]
Similarly XN is a median to $\triangle \mathrm{MNO}$
$\therefore \operatorname{ar}(\triangle M X N)=\operatorname{ar}(\triangle N X O)$
adding (1) and (2), we get,
$\operatorname{ar}(\triangle \mathrm{QMX})+(\triangle \mathrm{MXN})=\operatorname{ar}(\triangle \mathrm{QOX})+\operatorname{ar}(\Delta \mathrm{NOX})$
i.e. $\operatorname{ar}(\triangle Q M N)=\operatorname{ar}(\triangle Q O N)$.
$\operatorname{or} \operatorname{ar}(\triangle M N Q)=\operatorname{ar}(\triangle Q O N)$.

17

$P Q=P R$ (given)
$\therefore \angle 1=\angle 2$
[Q In a triangle angles opposite to equal sides are equal.]
In $\triangle Q M X$ and $\triangle R N X$.

$$
\begin{aligned}
& \angle \mathrm{M}=\angle \mathrm{N}\left(\text { Each } 90^{\circ}\right) \\
& \angle 1=\angle 2 \text { (Using (1)) } \\
& \mathrm{QX}=\mathrm{XR}(\text { Given })
\end{aligned}
$$

$\therefore \triangle \mathrm{QMX} \cong \Delta \mathrm{RNX}$ by AAS rule
So, $\operatorname{ar}(\Delta \mathrm{QMX})=\operatorname{ar}(\Delta \mathrm{RNX})$
i.e. $\operatorname{ar}(\Delta \mathrm{QMX})=\operatorname{ar}(\Delta N X R)$.
[Q areas of congruent figures are equal.]

$$
\begin{array}{ll}
\text { Volume of water in cubical tank } & =(\text { side })^{3}=(2)^{3}=8 \mathrm{~m}^{3} \\
\text { Base dimensions of cuboidal tank } & =250 \mathrm{~cm} \times 200 \mathrm{~cm} \\
& =2.5 \mathrm{~m} \times 2 \mathrm{~m}
\end{array}
$$

Let ' h ' be the height of water level in the cuboidal tank when water is shifted from cubical tank.
Volume of water in cuboidal tank = Volume of water in cubical tank

$$
=2.5 \times 2 \times h=8
$$

$\Rightarrow \mathrm{h}=\frac{8}{2.5 \times 2}=1.6 \mathrm{~m}$
Depth of tank which remains empty $=$ Height of tank - Depth of water in the tank
$=2-1.6$
$=0.4 \mathrm{~m}$
$=40 \mathrm{~cm}$

Let no. of times No Tail appeared $=x$
\therefore No. of times 1 Tail appeared $=2 x$

No. of times 2 Tail appeared $=3 x$
ATQ, $x+2 x+3 x=360$

$$
\begin{aligned}
& 6 x=360 \\
& x=\frac{360}{6}=60
\end{aligned}
$$

Hence, the table follows:
No. of Times

2 Tail	180
1 Tail	120
No Tail	60

Let E be the event of selecting 2 Tails.
No. of favourable outcomes $=180$

$$
P(E)=\frac{180}{360}=\frac{1}{2}
$$

The required frequency table is.
Time (in minutes) Frequency
http://jsuniltutorial.weebly.com/

$15-25$	5
$25-35$	3
$35-45$	2
$45-55$	5
$55-65$	

Class Intervals
Frequency

खण्ड-द / SECTION-D

प्रश्न संख्या 21 से 31 में प्रत्येक का 4 अंक है।
Question numbers $\mathbf{2 1}$ to $\mathbf{3 1}$ carry four marks each.

21
$a: \quad y=1$
b: $\quad 2 x+3 y=6$
student is right
intersection point $=\left(1, \frac{3}{2}\right)$
Area $=\frac{1}{2} \times 1 \times \frac{3}{2}$
$=\frac{3}{4}$ sq. units

Solution: $O P \perp A D$
AD is the chord of the outer circle
$\therefore \mathrm{AP}=\mathrm{PD}=\frac{1}{2} \mathrm{AD}$
(Perpendicular from the centre to the chord bisect the chord)

Similarly $B C$ is the chord of the inner circle and $O P \perp B C$
$\therefore B P=P C=\frac{1}{2} B C$ \qquad

Subtracting (2) from (1)
$A P-B P=P D-P C=\frac{1}{2} A D-\frac{1}{2} B C$
$A B=C D=\frac{1}{2}(A D-B C)$

Value : charity/ concern for handicapped children/ friendship

Construction 3 marks

Steps of construction 1 mark

P, Q, R and S are the mid - points of $A B, B C, C D$ and $A D$ respectively.
In $\triangle A B D$,
P and S are the mid - points of $A B$ and AD respectively (Given)
$\therefore \mathrm{PS} \| \mathrm{BD}$ and $\mathrm{PS}=\frac{1}{2} \mathrm{BD}----$-(1) [By Mid - point theorem]
In $\triangle B C D$,
Q and R are mid - points of $B C$ and $D C$ respectively (Given)
$\therefore Q R|\mid B D$-----(2) (By Mid - point theorem)
From (1) and (2),
$P S \| Q R$-----(3) (Two lines parallel to same line are parallel to each other)
Similarly, we can prove that, $\mathrm{SR}\|\mathrm{AC}, \mathrm{PQ}\| \mathrm{AC}$
$\therefore \mathrm{SR}|\mid \mathrm{PQ}-----(4)$
From (3) and (4),
PQRS is a parallelogram ($\mathrm{Q}_{\text {Both pairs of opposite side are parallel) }}$
In quadrilateral XOYP,
$X O|\mid P Y(Q P Q| | A C)$
$\mathrm{PX}\left|\mid \mathrm{YO}\left(\mathrm{Q}_{\mathrm{PS}}| | \mathrm{BD}\right)\right.$
$\therefore \mathrm{XOYP}$ is a parallelogram.
$\therefore \angle \mathrm{XPY}=\angle \mathrm{XOY}$ (Opposite angles of $\|^{\mathrm{gm}}$)
Q Diagonals of kite are perpendicular to each other,
$\therefore \angle X O Y=90^{\circ}$
$\therefore \angle \mathrm{XPY}=90^{\circ}$
$\therefore \mathrm{PQRS}$ is a parallelogram with $\angle \mathrm{P}=90^{\circ}$
\therefore PQRS is a rectangle.
(i) $\quad \mathrm{AB}=\mathrm{BC}$
$\therefore \angle \mathrm{BAC}=\angle \mathrm{BCA} \quad$ (Isosceles triangle property) ----- (1)
In $\triangle A B C$
$\angle \mathrm{ABC}+\angle \mathrm{BAC}+\angle \mathrm{BCA}=180^{\circ}($ Angle sum property of a $\Delta)$
$120+2 \angle B A C=180 \quad$ (from (1))
$\angle B A C=30^{\circ}$
(ii) $\quad \angle \mathrm{BEC}=\angle \mathrm{BAC}$ (angles in the same segment)

$$
=30^{\circ}
$$

(iii) $\quad \angle \mathrm{BOC}=2 \angle \mathrm{BAC} \quad$ (Angle subtended by an arc at the centre is
$=2 \times 30$ twice angle at remaining part of circle)

$$
\begin{array}{r}
\quad=60^{\circ} \\
\mathrm{BC}=\mathrm{CD}
\end{array}
$$

$$
\begin{aligned}
\therefore \angle \mathrm{COD} & =\angle \mathrm{BOC} \quad \text { (Equal chords subtend equal } \angle \mathrm{s} \text { at the centre) } \\
& =60^{\circ}
\end{aligned}
$$

(iv) $\quad \angle B O D=\angle C O D+\angle B O C$

$$
=60^{\circ}+60^{\circ}
$$

$$
=120^{\circ}
$$

$\therefore \angle \mathrm{BED}=\frac{1}{2} \angle \mathrm{BOD} \quad$ (Angle subtended by an arc at the centre is twice angle at remaining part of circle)

$$
=\frac{1}{2} \times 120=60^{\circ}
$$

$$
\begin{aligned}
& \mathrm{V}_{\text {cone }}=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h} \\
& \frac{1}{3} \times \frac{22}{7} \times 28 \times 28 \times \mathrm{h}=78848 \\
& \quad \mathrm{~h}=96 \mathrm{~cm} \\
& I=\sqrt{\mathrm{h}^{2}+\mathrm{r}^{2}}=100 \mathrm{~cm}
\end{aligned}
$$

$$
\text { Total surface area }=\pi r /+\pi r^{2}
$$

$$
=11264 \mathrm{~cm}^{2}
$$

$$
r=4 y, h=7 y
$$

$$
\begin{aligned}
& r=14 \mathrm{~cm}, R=r+\frac{50}{100} r=21 \mathrm{~cm} \\
& \% \text { Increase in volume } \frac{\frac{4}{\not b} / \pi\left(R^{3}-r^{3}\right)}{\frac{4}{2} / \pi r^{3}} \times 100 \\
& =\frac{\left(21^{3}-14^{3}\right)}{(14)^{3}} \times 100=\frac{7^{3}\left(3^{3}-2^{3}\right)}{7^{3} \cdot 2^{3}} \times 100= \\
& =\frac{19}{8}=100 \%=237.5 \%
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V}=1188 \\
& \pi \times 4 y \times 4 y \times 7 y=1188 \\
& y^{3}=\frac{27}{8} \\
& \begin{aligned}
=\frac{3}{2}
\end{aligned} \\
& \mathrm{r}=4 y, \quad \mathrm{~h}=7 \mathrm{y} \\
& =4 \times \frac{3}{2} \quad, \quad=7 \times \frac{3}{2}=\frac{21}{2} \\
& =6 \mathrm{~cm} \quad=10.5 \mathrm{~cm}
\end{aligned}
$$

(a) Total number of people of age group.

$$
\begin{aligned}
(18-29) \text { years } & =440+160+110+61+35 \\
& =806
\end{aligned}
$$

$\mathrm{E}_{1} \rightarrow$ between (18-29) years and liking type II movies
Favourable outcomes = 160

$$
P\left(E_{1}\right)=\frac{160}{806}=\frac{80}{403}
$$

(b) Total number of people of age group.

$$
\begin{aligned}
\text { above } 50 \text { yrs. } & =360+45+35+15+9 \\
& =464
\end{aligned}
$$

$\mathrm{E}_{2} \rightarrow$ Above 50 yrs. and likes all types movies

$$
P\left(E_{2}\right)=\frac{9}{464}
$$

(c) Total number of people of age group (30-50) yrs.

$$
\begin{aligned}
& =505+125+60+22+18 \\
& =730
\end{aligned}
$$

$\mathrm{E}_{3} \rightarrow$ between (30-50) yrs. and liking type I movies
Favourable outcome $=505$

$$
\mathrm{P}\left(\mathrm{E}_{3}\right)=\frac{505}{730}=\frac{101}{146}
$$

Mean of 35 observations $=75$

$$
\begin{aligned}
\text { Sum of observation } & =\text { Mean } \times \text { Total no. of observation } \\
& =75 \times 35 \\
& =\text { Rs. } 2625 \\
\text { Mean of } 18 \text { observation } & =70 \\
\text { Sum of I }{ }^{\text {st }} 18 \text { observation } & =70 \times 18 \\
& =1260 \\
\text { Mean of last } 18 \text { observation } & =80 \\
\text { Sum of last } 18 \text { observation } & =80 \times 18 \\
& =1440 \\
\text { Total of } 36 \text { observation } & =1260+1440 \\
& =2700 \\
\text { Total of } 35 \text { observation } & =2625 \\
18^{\text {th }} \text { observation } & =\text { Sum of } 36 \text { observation } \\
& =\text { Sum of } 35 \text { observation } \\
& =2700-2625=75
\end{aligned}
$$

खण्ड-य / SECTION-E
(मुक्त पाठ /Open Text)
(* Please ensure that open text of the given theme is supplied with this question paper.)

